ﻻ يوجد ملخص باللغة العربية
It is generally believed that a Wigner Crystal in single layer graphene can not form because the magnitudes of the Coulomb interaction and the kinetic energy scale similarly with decreasing electron density. However, this scaling argument does not hold for the low energy states in bilayer graphene. We consider the formation of a Wigner Crystal in weakly doped bilayer graphene with an energy gap opened by a perpendicular electric field. We argue that in this system the formation of the Wigner Crystal is not only possible, but different phases of the crystal with very peculiar properties may exist here depending on the system parameters.
We present a detailed theoretical analysis of the Wigner crystal states in confined semiconducting carbon nanotubes. We show by robust scaling arguments as well as by detailed semi-microscopic calculations that the effective exchange interaction has
Symmetry breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutr
By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows to synthesize two distinct ph
We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B = 18 T we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies ar
We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, includi