ﻻ يوجد ملخص باللغة العربية
We present an approach to the normal state of cuprate superconductors which is based on a minimal cluster extension of dynamical mean-field theory. Our approach is based on an effective two-impurity model embedded in a self-consistent bath. The two degrees of freedom of this effective model can be associated to the nodal and antinodal regions of momentum space. We find a metal-insulator transition which is selective in momentum space: At low doping quasiparticles are destroyed in the antinodal region, while they remain protected in the nodal region, leading to the formation of apparent Fermi arcs. We compare our results to tunneling and angular-resolved photoemission experiments on cuprates. At very low energy, a simple description of this transition can be given using rotationally invariant slave bosons.
We outline a general mechanism for Orbital-selective Mott transition (OSMT), the coexistence of both itinerant and localized conduction electrons, and show how it can take place in a wide range of realistic situations, even for bands of identical wid
The proposed loop-current order in cuprates cannot give the observed pseudogap and the Fermi-arcs because it preserves translation symmetry. A modification to a periodic arrangement of the four possible orientations of the order parameter with a larg
We analyze the pseudogap phenomenon of hole-doped cuprates via a Feynman-diagrammatic inspection of the Hubbard model. Our approach captures the pivotal interplay between Mott localization and Fermi surface topology beyond weak-coupling spin fluctuat
The electronic states near the Fermi level of recently discovered superconductor Ba$_2$CuO$_{4-delta}$ consist primarily of the Cu $d_{x^2-y^2}$ and $d_{3z^2-r^2}$ orbitals. We investigate the electronic correlation effect and the orbital polarizatio
We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hunds metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density an