ﻻ يوجد ملخص باللغة العربية
Supernova explosions inject a considerable amount of energy into the interstellar medium (ISM) in regions with high to moderate star formation rates. In order to assess whether the driving of turbulence by supernovae is also important in the outer Galactic disk, where the star formation rates are lower, we study the spatial distribution of molecular cloud (MC) inclinations with respect to the Galactic plane. The latter contains important information on the nature of the mechanism of energy injection into the ISM. We analyze the spatial correlations between the position angles (PAs) of a selected sample of MCs (the largest clouds in the catalogue of the outer Galaxy published by Heyer et al. 2001). Our results show that when the PAs of the clouds are all mapped to values into the [0,90]degrees interval, there is a significant degree of spatial correlation between the $PA$s on spatial scales in the range of 100-800 pc. These scales are of the order of the sizes of individual SN shells in low density environments such as those prevailing in the outer Galaxy and where the metallicity of the ambient gas is of the order of the solar value or smaller. These findings suggest that individual SN explosions, occurring in the outer regions of the Galaxy and in likewise spiral galaxies, albeit at lower rates, continue to play an important role in shaping the structure and dynamics of the ISM in those regions. The SN explosions we postulate here are likely associated with the existence of young stellar clusters in the far outer regions of the Galaxy and the UV emission and low levels of star formation observed with the GALEX satellite in the outer regions of local galaxies.
We present the serendipitous discovery of an extremely broad ($Delta V_{LSR} sim 150$ km/s), faint ($T_{mb} < 10 textrm{mK}$), and ubiquitous 1667 and 1665 MHz ground-state thermal OH emission towards the 2nd quadrant of the outer Galaxy ($R_{gal}$ >
We report the results of high-resolution (~0.2 pc) CO(1-0) and CS(2-1) observations of the central regions of three star-forming molecular clouds in the far-outer Galaxy (~16 kpc from the Galactic Center): WB89 85 (Sh 2-127), WB89 380, and WB89 437.
Giant Molecular Clouds (GMCs) are observed to be turbulent, but theory shows that without a driving mechanism turbulence should quickly decay. The question arises by which mechanisms turbulence is driven or sustained. It has been shown that photoioni
While the importance of supernova feedback in galaxies is well established, its role on the scale of molecular clouds is still debated. In this work, we focus on the impact of supernovae on individual clouds, using a high-resolution magneto-hydrodyna
We use the 13CO(2-1) emission from the SEDIGISM high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the SCIMES algorithm. This work compiles a cloud c