ترغب بنشر مسار تعليمي؟ اضغط هنا

The SEDIGISM survey: Molecular clouds in the inner Galaxy

392   0   0.0 ( 0 )
 نشر من قبل Ana Duarte Cabral
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the 13CO(2-1) emission from the SEDIGISM high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the SCIMES algorithm. This work compiles a cloud catalogue with a total of 10663 molecular clouds, 10300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases, and thus require further follow up work in order to be confirmed.



قيم البحث

اقرأ أيضاً

The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. The SEDIGISM survey covers 78 deg^2 of the inner Galaxy (-60 deg < l < +18 deg, |b| < 0.5 deg) in the J=2-1 rotational transition of 13CO. This isotopologue of CO is less abundant than 12CO by factors up to 100. Therefore, its emission has low to moderate optical depths, and higher critical density, making it an ideal tracer of the cold, dense interstellar medium. The data have been observed with the SHFI single-pixel instrument at APEX. The observational setup covers the 13CO(2-1) and C18O(2-1) lines, plus several transitions from other molecules. The observations have been completed. Data reduction is in progress, and the final data products will be made available in the near future. Here we give a detailed description of the survey and the dedicated data reduction pipeline. Preliminary results based on a science demonstration field covering -20 deg < l < -18.5 deg are presented. Analysis of the 13CO(2-1) data in this field reveals compact clumps, diffuse clouds, and filamentary structures at a range of heliocentric distances. By combining our data with data in the (1-0) transition of CO isotopologues from the ThrUMMS survey, we are able to compute a 3D realization of the excitation temperature and optical depth in the interstellar medium. Ultimately, this survey will provide a detailed, global view of the inner Galactic interstellar medium at an unprecedented angular resolution of ~30.
We present a high spatial resolution ($approx 20$ pc) of $^{12}$CO($2-1$) observations of the lenticular galaxy NGC4526. We identify 103 resolved Giant Molecular Clouds (GMCs) and measure their properties: size $R$, velocity dispersion $sigma_v$, and luminosity $L$. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC4526 is gravitationally bound, with a virial parameter $alpha sim 1$. The mass distribution, $dN/dM propto M^{-2.39 pm 0.03}$, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size-linewidth correlation for the NGC4526 clouds, in contradiction to the expectation from Larsons relation. In general, the GMCs in NGC4526 are more luminous, denser, and have a higher velocity dispersion than equal size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density $Sigma$ of GMCs is not approximately constant as previously believed, but varies by $sim 3$ orders of magnitude. We also show that the size and velocity dispersion of GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e. $sigma_v R^{-1/2} propto Sigma^{1/2}$.
The latest generation of high-angular-resolution unbiased Galactic plane surveys in molecular-gas tracers are enabling the interiors of molecular clouds to be studied across a range of environments. The CHIMPS survey simultaneously mapped a sector of the inner Galactic plane, within 27.8 < l < 46.2 deg and |b| < 0.5 deg, in 13CO and C18O (3-2) at 15 arcsec resolution. The combination of CHIMPS data with 12CO (3-2) data from the COHRS survey has enabled us to perform a voxel-by-voxel local-thermodynamic-equilibrium analysis, determining the excitation temperature, optical depth, and column density of 13CO at each l,b,v position. Distances to discrete sources identified by FellWalker in the 13CO (3-2) emission maps were determined, allowing the calculation of numerous physical properties of the sources, and we present the first source catalogues in this paper. We find that, in terms of size and density, the CHIMPS sources represent an intermediate population between large-scale molecular clouds identified by CO and dense clumps seen in dust emission, and therefore represent the bulk transition from the diffuse to the dense phase of molecular gas. We do not find any significant systematic variations in the masses, column densities, virial parameters, excitation temperature, or the turbulent pressure over the range of Galactocentric distance probed, but we do find a shallow increase in the mean volume density with increasing Galactocentric distance. We find that inter-arm clumps have significantly narrower linewidths, and lower virial parameters and excitation temperatures than clumps located in spiral arms. When considering the most reliable distance-limited subsamples, the largest variations occur on the clump-to-clump scale, echoing similar recent studies that suggest that the star-forming process is largely insensitive to the Galactic-scale environment, at least within the inner disc.
Spectral line survey observations of 7 molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamenta l species such as CS, SO, CCH, HCN, HCO+, and HNC are detected in addition to those of CO and 13CO, while CH3OH is not detected in any source and N2H+ is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the 7 sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic to the LMC without influences of star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH3OH. The feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas the features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO+ and SO/HCO+ ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along molecular cloud formation.
Star formation activity depends on galactic-scale environments. To understand the variations in star formation activity, comparing the properties of giant molecular clouds (GMCs) among environments with different star formation efficiency (SFE) is ne cessary. We thus focus on a strongly barred galaxy to investigate the impact of the galactic environment on the GMCs properties, because the SFE is clearly lower in bar regions than in arm regions. In this paper, we present the $^{12}$CO($1-0$) observations toward the western bar, arm and bar-end regions of the strongly barred galaxy NGC1300 with ALMA 12-m array at a high angular resolution of $sim$40 pc. We detected GMCs associated with the dark lanes not only in the arm and bar-end regions but also in the bar region, where massive star formation is not seen. Using the CPROPS algorithm, we identified and characterized 233 GMCs across the observed regions. Based on the Kolmogorov-Smirnov test, we find that there is virtually no significant variations in GMC properties (e.g., radius, velocity dispersion, molecular gas mass, and virial parameter) among the bar, arm and bar-end region. These results suggest that systematic differences in the physical properties of the GMCs are not the cause for SFE differences with environments, and that there should be other mechanisms which control the SFE of the GMCs such as fast cloud-cloud collisions in NGC1300.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا