ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM Cluster Survey: Galaxy Morphologies and the Color-Magnitude Relation in XMMXCS J2215.9-1738 at z=1.46

137   0   0.0 ( 0 )
 نشر من قبل Matthew Hilton
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the morphological fractions and color-magnitude relation in the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9-1738 at z=1.46, using a combination of optical imaging data obtained with the Hubble Space Telescope Advanced Camera for Surveys, and infrared data from the Multi-Object Infrared Camera and Spectrograph, mounted on the 8.2m Subaru telescope. We find that the morphological mix of the cluster galaxy population is similar to clusters at z~1: approximately ~62% of the galaxies identified as likely cluster members are ellipticals or S0s; and ~38% are spirals or irregulars. We measure the color-magnitude relations for the early type galaxies, finding that the slope in the z_850-J relation is consistent with that measured in the Coma cluster, some ~9 Gyr earlier, although the uncertainty is large. In contrast, the measured intrinsic scatter about the color-magnitude relation is more than three times the value measured in Coma, after conversion to rest frame U-V. From comparison with stellar population synthesis models, the intrinsic scatter measurements imply mean luminosity weighted ages for the early type galaxies in J2215.9-1738 of ~3 Gyr, corresponding to the major epoch of star formation coming to an end at z_f = 3-5. We find that the cluster exhibits evidence of the `downsizing phenomenon: the fraction of faint cluster members on the red sequence expressed using the Dwarf-to-Giant Ratio (DGR) is 0.32+/-0.18. This is consistent with extrapolation of the redshift evolution of the DGR seen in cluster samples at z < 1. In contrast to observations of some other z > 1 clusters, we find a lack of very bright galaxies within the cluster.



قيم البحث

اقرأ أيضاً

We present new spectroscopic observations of the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9-1738 at z=1.457, obtained with the DEIMOS instrument at the W. M. Keck Observatory, and the FORS2 instrument on the ESO Very L arge Telescope. Within the cluster virial radius, as estimated from the cluster X-ray properties, we increase the number of known spectroscopic cluster members to 17 objects, and calculate the line of sight velocity dispersion of the cluster to be 580+/-140 km/s. We find mild evidence that the velocity distribution of galaxies within the virial radius deviates from a single Gaussian. We show that the properties of J2215.9-1738 are inconsistent with self-similar evolution of local X-ray scaling relations, finding that the cluster is underluminous given its X-ray temperature, and that the intracluster medium contains ~2-3 times the kinetic energy per unit mass of the cluster galaxies. These results can perhaps be explained if the cluster is observed in the aftermath of an off-axis merger. Alternatively, heating of the intracluster medium through supernovae and/or Active Galactic Nuclei activity, as is required to explain the observed slope of the local X-ray luminosity-temperature relation, may be responsible.
208 - S. Mieske , A. Jordan , P. Cote 2010
We investigate the color-magnitude relation for globular clusters (GCs) -- the so-called blue tilt -- detected in the ACS Fornax Cluster Survey and using the combined sample of GCs from the ACS Fornax and Virgo Cluster Surveys. We find a tilt of gamm a_z=d(g-z)/dz=-0.0257 +- 0.0050 for the full GC sample of the Fornax Cluster Survey (~5800 GCs). This is slightly shallower than the value gamma_z=-0.0459 +- 0.0048 found for the Virgo Cluster Survey GC sample (~11100 GCs). The slope for the merged Fornax and Virgo datasets (~16900 GCs) is gamma_z=-0.0293 +- 0.0085, corresponding to a mass-metallicity relation of Z ~ M^0.43. We find that the blue tilt sets in at GC masses in excess of M ~ 2*10^5 M_sun. The tilt is stronger for GCs belonging to high-mass galaxies (M_* > 5 * 10^10 M_sun) than for those in low-mass galaxies (M_* < 5 * 10^10 M_sun). It is also more pronounced for GCs with smaller galactocentric distances. Our findings suggest a range of mass-metallicity relations Z_GC ~ M_GC^(0.3-0.7) which vary as a function of host galaxy mass/luminosity. We compare our observations to a recent model of star cluster self-enrichment with generally favorable results. We suggest that, within the context of this model, the proto-cluster clouds out of which the GCs formed may have had density profiles slightly steeper than isothermal and/or star formation efficiencies somewhat below 0.3. We caution, however, that the significantly different appearance of the CMDs defined by the GC systems associated with galaxies of similar mass and morphological type pose a challenge to any single mechanism that seeks to explain the blue tilt. We therefore suggest that the merger/accretion histories of individual galaxies have played a non-negligible role determining the distribution of GCs in the CMDs of individual GC systems.
We apply detailed observations of the Color-Magnitude Relation (CMR) with the ACS/HST to study galaxy evolution in eight clusters at z~1. The early-type red sequence is well defined and elliptical and lenticular galaxies lie on similar CMRs. We analy ze CMR parameters as a function of redshift, galaxy properties and cluster mass. For bright galaxies (M_B < -21mag), the CMR scatter of the elliptical population in cluster cores is smaller than that of the S0 population, although the two become similar at faint magnitudes. While the bright S0 population consistently shows larger scatter than the ellipticals, the scatter of the latter increases in the peripheral cluster regions. If we interpret these results as due to age differences, bright elliptical galaxies in cluster cores are on average older than S0 galaxies and peripheral elliptical galaxies (by about 0.5Gyr). CMR zero point, slope, and scatter in the (U-B)_z=0 rest-frame show no significant evolution out to redshift z~1.3 nor significant dependence on cluster mass. Two of our clusters display CMR zero points that are redder (by ~2sigma) than the average (U-B)_z=0 of our sample. We also analyze the fraction of morphological early-type and late-type galaxies on the red sequence. We find that, while in the majority of the clusters most (80% to 90%) of the CMR population is composed of early-type galaxies, in the highest redshift, low mass cluster of our sample, the CMR late-type/early-type fractions are similar (~50%), with most of the late-type population composed of galaxies classified as S0/a. This trend is not correlated with the clusters X-ray luminosity, nor with its velocity dispersion, and could be a real evolution with redshift.
We confirm the detection of 3 groups in the Lynx supercluster, at z~1.3, and give their redshifts and masses. We study the properties of the group galaxies as compared to the central clusters, RXJ0849+4452 and RXJ0848+4453, selecting 89 galaxies in t he clusters and 74 galaxies in the groups. We morphologically classify galaxies by visual inspection, noting that our early-type galaxy (ETG) sample would have been contaminated at the 30% -40% level by simple automated classification methods (e.g. based on Sersic index). In luminosity selected samples, both clusters and groups show high fractions of Sa galaxies. The ETG fractions never rise above ~50% in the clusters, which is low compared to the fractions observed in clusters at z~1. However, ETG plus Sa fractions are similar to those observed for ETGs in clusters at z~1. Bulge-dominated galaxies visually classified as Sas might also be ETGs with tidal features or merger remnants. They are mainly red and passive, and span a large range in luminosity. Their star formation seems to have been quenched before experiencing a morphological transformation. Because their fraction is smaller at lower redshifts, they might be the spiral population that evolves into ETGs. For mass-selected samples, the ETG fraction show no significant evolution with respect to local clusters, suggesting that morphological transformations occur at lower masses and densities. The ETG mass-size relation shows evolution towards smaller sizes at higher redshift in both clusters and groups, while the late-type mass-size relation matches that observed locally. The group ETG red sequence shows lower zero points and larger scatters than in clusters, both expected to be an indication of a younger galaxy population. The estimated age difference is small when compared to the difference in age at different galaxy masses.
We investigate the origin of the colour-magnitude relation (CMR) observed in cluster galaxies by using a combination of a cosmological N-body simulation of a cluster of galaxies and a semi-analytic model of galaxy formation. The departure of galaxies in the bright end of the CMR with respect to the trend denoted by less luminous galaxies could be explained by the influence of minor mergers
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا