ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM Cluster Survey: The Dynamical State of XMMXCS J2215.9-1738 at z=1.457

352   0   0.0 ( 0 )
 نشر من قبل Matthew Hilton
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new spectroscopic observations of the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9-1738 at z=1.457, obtained with the DEIMOS instrument at the W. M. Keck Observatory, and the FORS2 instrument on the ESO Very Large Telescope. Within the cluster virial radius, as estimated from the cluster X-ray properties, we increase the number of known spectroscopic cluster members to 17 objects, and calculate the line of sight velocity dispersion of the cluster to be 580+/-140 km/s. We find mild evidence that the velocity distribution of galaxies within the virial radius deviates from a single Gaussian. We show that the properties of J2215.9-1738 are inconsistent with self-similar evolution of local X-ray scaling relations, finding that the cluster is underluminous given its X-ray temperature, and that the intracluster medium contains ~2-3 times the kinetic energy per unit mass of the cluster galaxies. These results can perhaps be explained if the cluster is observed in the aftermath of an off-axis merger. Alternatively, heating of the intracluster medium through supernovae and/or Active Galactic Nuclei activity, as is required to explain the observed slope of the local X-ray luminosity-temperature relation, may be responsible.

قيم البحث

اقرأ أيضاً

We present a study of the morphological fractions and color-magnitude relation in the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9-1738 at z=1.46, using a combination of optical imaging data obtained with the Hubble Spac e Telescope Advanced Camera for Surveys, and infrared data from the Multi-Object Infrared Camera and Spectrograph, mounted on the 8.2m Subaru telescope. We find that the morphological mix of the cluster galaxy population is similar to clusters at z~1: approximately ~62% of the galaxies identified as likely cluster members are ellipticals or S0s; and ~38% are spirals or irregulars. We measure the color-magnitude relations for the early type galaxies, finding that the slope in the z_850-J relation is consistent with that measured in the Coma cluster, some ~9 Gyr earlier, although the uncertainty is large. In contrast, the measured intrinsic scatter about the color-magnitude relation is more than three times the value measured in Coma, after conversion to rest frame U-V. From comparison with stellar population synthesis models, the intrinsic scatter measurements imply mean luminosity weighted ages for the early type galaxies in J2215.9-1738 of ~3 Gyr, corresponding to the major epoch of star formation coming to an end at z_f = 3-5. We find that the cluster exhibits evidence of the `downsizing phenomenon: the fraction of faint cluster members on the red sequence expressed using the Dwarf-to-Giant Ratio (DGR) is 0.32+/-0.18. This is consistent with extrapolation of the redshift evolution of the DGR seen in cluster samples at z < 1. In contrast to observations of some other z > 1 clusters, we find a lack of very bright galaxies within the cluster.
We report the discovery of XMMXCS J2215.9-1738, a massive galaxy cluster at z =1.45, which was found in the XMM Cluster Survey. The cluster candidate was initially identified as an extended X-ray source in archival XMM data. Optical spectroscopy show s that 6 galaxies within a 60 arcsec diameter region lie at z = 1.45 +/- 0.01. Model fits to the X-ray spectra of the extended emission yield kT = 7.4 (+2.7,-1.8) keV (90 % confidence); if there is an undetected central X-ray point source then kT = 6.5 (+2.6,-1.8) keV. The bolometric X-ray luminosity is Lx = 4.4 (+0.8,-0.6) x 10^44 ergs/s over a 2 Mpc radial region. The measured Tx, which is the highest known for a cluster at z > 1, suggests that this cluster is relatively massive for such a high redshift. The redshift of XMMXCS J2215.9-1738 is the highest currently known for a spectroscopically-confirmed cluster of galaxies.
69 - D.M. Neumann 2002
We present in this paper a substructure and spectroimaging study of the Coma cluster of galaxies based on XMM-Newton data. XMM-Newton performed a mosaic of observations of Coma to ensure a large coverage of the cluster. We add the different pointings together and fit elliptical beta-models to the data. We subtract the cluster models from the data and look for residuals, which can be interpreted as substructure. We find several significant structures: the well-known subgroup connected to NGC4839 in the South-West of the cluster, and another substructure located between NGC 4839 and the centre of the Coma cluster. Constructing a hardness ratio image, which can be used as a temperature map we see that in front of this new structure the temperature is significantly increased (higher or equal 10 keV). We interpret this temperature enhancement as the result of heating as this structure falls onto the Coma cluster. We furthermore reconfirm the filament-like structure South-East of the cluster centre. This region is significantly cooler than the mean cluster temperature. We estimate the temperature of this structure to be equal or below 1keV. A possible scenario to explain the observed features is stripping caused by the infall of a small group of galaxies located around the two galaxies NGC4921 and NGC4911 into the Coma cluster with a non-zero impact parameter. We also see significant X-ray depressions North and South-East of NGC4921, which might either be linked to tidal forces due to the merger with the Western structure or connected to an older cluster merger.
163 - C. Maier 2019
(Abridged) We explore the massive cluster XMMXCSJ2215.9-1738 at z~1.5 with KMOS spectroscopy of Halpha and [NII] covering a region that corresponds to about one virial radius. Using published spectroscopic redshifts of 108 galaxies in and around the cluster we computed the location of galaxies in the projected velocity vs. position phase-space to separate our cluster sample into a virialized region of objects accreted longer ago (roughly inside half R200) and a region of infalling galaxies. We measured oxygen abundances for ten cluster galaxies with detected [NII] lines in the individual galaxy spectra and compared the MZR of the galaxies inside half R200 with the infalling galaxies and a field sample at similar redshifts. We find that the oxygen abundances of individual z~1.5 star-forming cluster galaxies inside half R200 are comparable, at the respective stellar mass, to the higher local SDSS metallicity values. We find that the [NII]/Halpha line ratios inside half R200 are higher by 0.2 dex and that the resultant metallicities of the galaxies in the inner part of the cluster are higher by about 0.1 dex, at a given mass, than the metallicities of infalling galaxies and of field galaxies at z~1.5. The enhanced metallicities of cluster galaxies at z~1.5 inside half R200 indicate that the density of the ICM in this massive cluster becomes high enough toward the cluster center such that the ram pressure exceeds the restoring pressure of the hot gas reservoir of cluster galaxies. This can remove the gas reservoir initiating quenching; although the galaxies continue to form stars, albeit at slightly lower rates, using the available cold gas in the disk which is not stripped.
We present deep J and Ks band photometry of 20 high redshift galaxy clusters between z=0.8-1.5, 19 of which are observed with the MOIRCS instrument on the Subaru Telescope. By using near-infrared light as a proxy for stellar mass we find the surprisi ng result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ~9e11MSol since z~1.5. We investigate the effect on this result of differing star formation histories generated by three well known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter haloes, which predict a more protracted mass build up over a Hubble time. We discuss however that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا