ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin transport and bipolaron density in organic polymers

120   0   0.0 ( 0 )
 نشر من قبل U. Zuelicke
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Ingenhoven




اسأل ChatGPT حول البحث

We present a theory for spin-polarized transport through a generic organic polymer connected to ferromagnetic leads with arbitrary angle theta between their magnetization directions, taking into account the polaron and bipolaron states as effective charge and spin carriers. Within a diffusive description of polaron-bipolaron transport including polaron-bipolaron conversion, we find that the bipolaron density depends on the angle theta. This is remarkable, given the fact that bipolarons are spinless quasiparticles, and opens a new way to probe spin accumulation in organic polymers.



قيم البحث

اقرأ أيضاً

96 - H. Popli , J. Wang , X. Liu 2021
We have experimentally tested the hypothesis of free charge carrier mediated spin-transport in the small molecule organic semiconductor Alq3 at room temperature. A spin current was pumped into this material by pulsed ferromagnetic resonance of an adj acent NiFe layer, while a charge current resulting from this spin current via the inverse spin-Hall effect (ISHE) was detected in a Pt layer adjacent on the other side of the Alq3 layer, confirming a pure spin current through the Alq3 layer. Charge carrier spin states in Alq3, were then randomized by simultaneous application of electron paramagnetic resonance (EPR). No influence of the EPR excitation on the ISHE current was found, implying that spin-transport is not mediated by free charge-carriers in Alq3.
Many optoelectronic devices based on organic materials require rapid and long-range singlet exciton transport. Key factors that control the transport of singlet excitons includes the electronic structure of the material, disorder and exciton-phonon c oupling. An important parameter whose influence on exciton transport has not been explored is the symmetry of the singlet electronic state (S1). Here, we employ femtosecond transient absorption spectroscopy and microscopy to reveal the relationship between the symmetry of S1 and exciton transport in highly aligned, near-disorder free, one-dimensional conjugated polymers based on polydiacetylene.
71 - N. Jean , S. Sanvito 2005
We present a study of the effects of inelastic scattering on the transport properties of various nanoscale devices, namely H$_2$ molecules sandwiched between Pt contacts, and a spin-valve made by an organic molecule attached to model half-metal ferro magnetic current/voltage probes. In both cases we use a tight-binding Su-Schrieffer-Heeger Hamiltonian and the inelastic effects are treated with a multi-channel method, including Pauli exclusion principle. In the case of the H$_2$ molecule, we find that inelastic backscattering is responsible for the drop of the differential conductance at biases larger than the excitation energy of the lower of the molecular phonon modes. In the case of the spin-valve, we investigate the different spin-currents and the magnetoresistance as a function of the position of the Fermi level with respect to the spin-polarized band edges. In general inelastic scattering reduces the spin-polarization of the current and consequently the magnetoresistance.
Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin transport properties of normal-metal--insulating antiferromagnet--normal-met al heterostructures are calculated. We focus on the thick-film regime, where the AF is thicker than the magnon equilibration length. This regime allows the use of a drift-diffusion approach, which is opposed to the thin-film limit considered by Bender {it et al.} 2017, where a stochastic approach is justified. We obtain the temperature- and thickness-dependence of the structural spin Seebeck coefficient $mathcal{S}$ and magnon conductance $mathcal{G}$. In their evaluation we incorporate effects from field- and temperature-dependent spin conserving inter-magnon scattering processes. Furthermore, the interfacial spin transport is studied by evaluating the contact magnon conductances in a microscopic model that accounts for the sub-lattice symmetry breaking at the interface. We find that while inter-magnon scattering does slightly suppress the spin Seebeck effect, transport is generally unaffected, with the relevant spin decay length being determined by non-magnon-conserving processes such as Gilbert damping. In addition, we find that while the structural spin conductance may be enhanced near the spin flip transition, it does not diverge due to spin impedance at the normal metal|magnet interfaces.
The spin-crossover in organometallic molecules constitutes one of the most promising routes towards the realization of molecular spintronic devices. In this article, we explore the hybridization-induced spin-crossover in metal-organic complexes. We p ropose a minimal many-body model that captures the essence of the spin-state switching in a generic parameter space, thus providing insight into the underlying physics. Combining the model with density functional theory (DFT), we then study the spin-crossover in isomeric structures of Ni-porphyrin (Ni-TPP). We show that metal-ligand charge transfer plays a crucial role in the determination of the spin-state in Ni-TPP. Finally, we propose a spin-crossover mechanism based on mechanical strain, which does not require a switch between isomeric structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا