ﻻ يوجد ملخص باللغة العربية
We present a detailed theoretical discussion of the effects of ubiquitous laser noise on cooling and the coherent dynamics in opto-mechanical systems. Phase fluctuations of the driving laser induce modulations of the linearized opto-mechanical coupling as well as a fluctuating force on the mirror due to variations of the mean cavity intensity. We first evaluate the influence of both effects on cavity cooling and find that for a small laser linewidth the dominant heating mechanism arises from intensity fluctuations. The resulting limit on the final occupation number scales linearly with the cavity intensity both under weak and strong coupling conditions. For the strong coupling regime, we also determine the effect of phase noise on the coherent transfer of single excitations between the cavity and the mechanical resonator and obtain a similar conclusion. Our results show that conditions for optical ground state cooling and coherent operations are experimentally feasible and thus laser phase noise does pose a challenge but not a stringent limitation for opto-mechanical systems.
We show how to apply the Leggett-Garg inequality to opto-electro-mechanical systems near their quantum ground state. We find that by using a dichotomic quantum non-demolition measurement (via, e.g., an additional circuit-QED measurement device) eithe
We implement a cavity opto-electromechanical system integrating electrical actuation capabilities of nanoelectromechanical devices with ultrasensitive mechanical transduction achieved via intra-cavity optomechanical coupling. Electrical gradient forc
One of the most important goals in quantum thermodynamics is to demonstrate advantages of thermodynamic protocols over their classical counterparts. For that, it is necessary to (i) develop theoretical tools and experimental set-ups to deal with quan
Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum-non-demolition measurements were first introduced in the 1970s in the context of gravitational
We propose two measurement-based schemes to cool a nonlinear mechanical resonator down to energies close to that of its ground state. The protocols rely on projective measurements of a spin degree of freedom, which interacts with the resonator throug