ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity and Field-Induced Magnetism in SrFe_1.75Co_0.25As_2

112   0   0.0 ( 0 )
 نشر من قبل Rustem Khasanov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using muon-spin rotation, we studied the in-plane (lambda_ab) and the out of plane (lambda_c) magnetic field penetration depth in SrFe_1.75Co_0.25As_2 (T_c=13.3 K). Both lambda_ab(T) and lambda_c(T) are consistent with the presence of two superconducting gaps with the gap to T_c ratios 2Delta/k_BT_c=7.2 and 2.7. The penetration depth anisotropy gamma_lambda=lambda_c/lambda_ab increases from gamma_lambda=2.1 at T_c to 2.7 at 1.6 K. The mean internal field in the superconducting state increases with decreasing temperature, just opposite to the diamagnetic response seen in magnetization experiments. This unusual behavior suggests that the external field induces a magnetic order which is maintained throughout the whole sample volume.

قيم البحث

اقرأ أيضاً

We report muon-spin rotation/relaxation (muSR) measurements on single crystals of the electron-doped high-T_c superconductor Pr$_{2-x}$Ce$_x$CuO$_4$. In zero external magnetic field, superconductivity is found to coexist with Cu spins that are static on the muSR time scale. In an applied field, we observe a Knight shift that is primarily due to the magnetic moment induced on the Pr ions. Below the superconducting transition temperature T_c, an additional source of static magnetic order appears throughout the sample. This finding is consistent with antiferromagnetic ordering of the Cu spins in the presence of vortices. We also find that the temperature dependence of the in-plane magnetic penetration depth in the vortex state resembles that of the hole-doped cuprates at temperatures above ~ 0.2 T_c.
The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important is sues which need to be resolved. In the present work, the suppression of magnetism and the occurrence of superconductivity in CrAs as a function of pressure ($p$) were studied by means of muon spin rotation. The magnetism remains bulk up to $psimeq3.5$~kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at $psimeq$7~kbar. At 3.5 kbar superconductivity abruptly appears with its maximum $T_c simeq 1.2$~K which decreases upon increasing the pressure. In the intermediate pressure region ($3.5lesssim plesssim 7$~kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature ($T_c$) and of the superfluid density ($rho_s$). A scaling of $rho_s$ with $T_c^{3.2}$ as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.
49 - W. Gillijns , A.V. Silhanek , 2006
We investigate the transport properties of a thin superconducting Al layer covering a square array of magnetic dots with out-of-plane magnetization. A thorough characterization of the magnetic properties of the dots allowed us to fine-tune their magn etic state at will, hereby changing the influence of the dots on the superconductor in a continuous way. We show that even though the number of vortex-antivortex pairs discretely increases with increasing the magnetization of the dots, no corresponding discontinuity is observed in the resistance of the sample. The evolution of the superconducting phase boundary as the magnetic state of the dots is swept permits one to devise a fully controllable and erasable field induced superconductor.
165 - L. Li , Z. R. Yang , Z. T. Zhang 2011
High-quality single crystals of K0.8Fe2Se1.4S0.4 are successfully synthesized by self-flux method with the superconducting transition temperatures Tconset = 32.8 K and Tczero = 31.2 K. In contrast to external pressure effect on superconductivity, the substitution of S for Se does not suppress Tc, which suggests that chemical doping may mainly modulate the anion height from Fe-layer rather than compressing interlayer distance. The investigation of the micromagnetism by electron spin resonance shows clear evidence for strong spin fluctuation at temperatures above Tc. Accompanied by the superconducting feature spectra, a novel resonance signal develops gradually upon cooling below Tc, indicating the coexistence of superconductivity and magnetism in K0.8Fe2Se1.4S0.4 crystal.
Recent studies on superconductivity in NbSe$_2$ have demonstrated a large anisotropy in the superconducting critical field when the material is reduced to a single monolayer. Motivated by this recent discovery, we use density functional theory (DFT) calculations to quantitatively address the superconducting properties of bulk and monolayer NbSe$_2$. We demonstrate that NbSe$_2$ is close to a ferromagnetic instability, and analyze our results in the context of experimental measurements of the spin susceptibility in NbSe$_2$. We show how this magnetic instability, which is pronounced in a single monolayer, can enable sizeable singlet-triplet mixing of the superconducting order parameter, contrary to contemporary considerations of the pairing symmetry in monolayer NbSe$_2$, and discuss approaches as to how this degree of mixing can be addressed quantitatively within our DFT framework. Our calculations also enable a quantitative description of the large anisotropy of the superconducting critical field, using DFT calculations of monolayer NbSe$_2$ in the normal state
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا