ترغب بنشر مسار تعليمي؟ اضغط هنا

A Test of a New Interacting N-Body Wave Function

47   0   0.0 ( 0 )
 نشر من قبل Deborah Watson
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The resources required to solve the general interacting quantum N-body problem scale exponentially with N, making the solution of this problem very difficult when N is large. In a previous series of papers we develop an approach for a fully-interacting wave function with a general two-body interaction which tames the N-scaling by developing a perturbation series that is order-by-order invariant under a point group isomorphic with S_N . Group theory and graphical techniques are then used to solve for the wave function exactly and analytically at each order. Recently this formalism has been used to obtain the first-order, fully-interacting wave function for a system of harmonically-confined bosons interacting harmonically. In this paper, we report the first application of this N-body wave function to a system of N fully-interacting bosons in three dimensions. We determine the density profile for a confined system of harmonically-interacting bosons. Choosing this simple interaction is not necessary or even advantageous for our method, however this choice allows a direct comparison of our exact results through first order with exact results obtained in an independent solution. Our density profile through first-order in three dimensions is indistinguishable from the first-order exact result obtained independently and shows strong convergence to the exact result to all orders.

قيم البحث

اقرأ أيضاً

We establish a new geometric wave function that combined with a variational principle efficiently describes a system of bosons interacting in a one-dimensional trap. By means of a a combination of the exact wave function solution for contact interact ions and the asymptotic behaviour of the harmonic potential solution we obtain the ground state energy, probability density and profiles of a few boson system in a harmonic trap. We are able to access all regimes, ranging from the strongly attractive to the strongly repulsive one with an original and simple formulation.
Generation of wave structures by a two-dimensional object (laser beam) moving in a two-dimensional two-component Bose-Einstein condensate with a velocity greater than both sound velocities of the mixture is studied by means of analytical methods and systematic simulations of the coupled Gross-Pitaevskii equations. The wave pattern features three regions separated by two Mach cones. Two branches of linear patterns similar to the so-called ship waves are located outside the corresponding Mach cones, and oblique dark solitons are found inside the wider cone. An analytical theory is developed for the linear patterns. A particular dark-soliton solution is also obtained, its stability is investigated, and two unstable modes of transverse perturbations are identified. It is shown that, for a sufficiently large flow velocity, this instability has a convective character in the reference frame attached to the moving body, which makes the dark soliton effectively stable. The analytical findings are corroborated by numerical simulations.
356 - J. P. Kestner , L.-M. Duan 2007
We present a solution of the three-fermion problem in a harmonic potential across a Feshbach resonance. We compare the spectrum with that of the two-body problem and show that it is energetically unfavorable for the three fermions to occupy one latti ce site rather than two. We also demonstrate the existence of an energy level crossing in the ground state with a symmetry change of its wave function, suggesting the possibility of a phase transition for the corresponding many-body case.
We present new calculations of the energy flux of a spinning test-body on circular orbits around a Schwarzschild black hole at linear order in the particle spin. We compute the multipolar fluxes up to $ell=m=6$ using two independent numerical solvers of theTeukolsky equation, one in the time domain and the other in the frequency domain. After linearization in the spin of the particle, we obtain an excellent agreement ($sim 10^{-5}$) between the two numerical results.The calculation of the multipolar fluxes is also performed analytically (up to $ell=7$) using the post-Newtonian (PN) expansion of the Teukolsky equation solution; each mode is obtained at 5.5PN order beyond the corresponding leading-order contribution. From the analytical fluxes we obtain the PN-expanded analytical waveform amplitudes. These quantities are then resummed using new procedures either based on the factorization of the orbital contribution (and resumming it independently from the spin-dependent factor) or on the factorization of the tail contribution solely for odd-parity multipoles. We compare these prescriptions and the resummation procedure proposed in Pan et al. [Phys. Rev. D 83 (2011) 064003] to the numerical data. We find that the new procedures significantly improve over the existing one that, notably, is inconsistent with the numerical data for $ell+m=text{odd}$ multipoles already at low orbital frequencies. Our study suggests that the approach to waveform resummation used in current effective-one-body-based waveform models should be modified to improve its robustness and accuracy all over the binary parameter space.
The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis of the shot-to-shot variations of interference fringe contrast for pairs of independently created one-dimensional Bose condensates. Analyzing different system sizes we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from Poissonian to Gumbel-type, in excellent agreement with theoretical predictions based on the Luttinger liquid formalism. We present the first experimental observation of quasi long-range order in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا