ترغب بنشر مسار تعليمي؟ اضغط هنا

Level crossing in the three-body problem for strongly interacting fermions in a harmonic trap

439   0   0.0 ( 0 )
 نشر من قبل Jason Kestner
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a solution of the three-fermion problem in a harmonic potential across a Feshbach resonance. We compare the spectrum with that of the two-body problem and show that it is energetically unfavorable for the three fermions to occupy one lattice site rather than two. We also demonstrate the existence of an energy level crossing in the ground state with a symmetry change of its wave function, suggesting the possibility of a phase transition for the corresponding many-body case.



قيم البحث

اقرأ أيضاً

142 - Jianqing Qi , Lei Wang , Xi Dai 2009
We propose a Real-Space Gutzwiller variational approach and apply it to a system of repulsively interacting ultracold fermions with spin 1/2 trapped in an optical lattice with a harmonic confinement. Using the Real-Space Gutzwiller variational approa ch, we find that in system with balanced spin-mixtures on a square lattice, antiferromagnetism either appears in a checkerboard pattern or forms a ring and antiferromagnetic order is stable in the regions where the particle density is close to one, which is consistent with the recent results obtained by the Real-Space Dynamical Mean-field Theory approach. We also investigate the imbalanced case and find that antiferromagnetic order is suppressed there.
We consider identical quantum bosons with weak contact interactions in a two-dimensional isotropic harmonic trap. When the interactions are turned off, the energy levels are equidistant and highly degenerate. At linear order in the coupling parameter , these degenerate levels split, and we study the patterns of this splitting. It turns out that the problem is mathematically identical to diagonalizing the quantum resonant system of the two-dimensional Gross-Pitaevskii equation, whose classical counterpart has been previously studied in the mathematical literature on turbulence. Our purpose is to explore the implications of the symmetries and energy bounds of this resonant system, previously studied for the classical case, for the quantum level splitting. Simplifications in computing the splitting spectrum numerically result from exploiting the symmetries. The highest energy state emanating from each unperturbed level is explicitly described by our analytics. We furthermore discuss the energy level spacing distributions in the spirit of quantum chaos theory. After separating the eigenvalues into blocks with respect to the known conservation laws, we observe the Wigner-Dyson statistics within specific large blocks, which leaves little room for further integrable structures in the problem beyond the symmetries that are already explicitly known.
107 - J. P. Kestner , L.-M. Duan 2007
We derive an effective low-dimensional Hamiltonian for strongly interacting ultracold atoms in a transverse trapping potential near a wide Feshbach resonance. The Hamiltonian includes crucial information about transverse excitations in an effective m odel with renormalized interaction between atoms and composite dressed molecules. We fix all the parameters in the Hamiltonian for both one- and two-dimensional cases.
We make use of a simple pair correlated wave function approach to obtain results for the ground-state densities and momentum distribution of a one-dimensional three-body bosonic system with different interactions in a harmonic trap. For equal interac tions this approach is able to reproduce the known analytical cases of zero and infinite repulsion. We show that our results for the correlations agree with the exact diagonalization in all interaction regimes and with analytical results for the strongly repulsive impurity. This method also enables us to access the more complicated cases of mixed interactions, and the probability densities of these systems are analyzed.
In this work, combining the Bethe ansatz approach with the variational principle, we calculate the ground state energy of the relative motion of a system of two fermions with spin up and down interacting via a delta-function potential in a 1D harmoni c trap. Our results show good agreement with the analytical solution of the problem, and provide a starting point for the investigation of more complex few-body systems where no exact theoretical solution is available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا