ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic transitions in a Double Exchange-Holstein model with e-ph interactions coupled to magnetism

45   0   0.0 ( 0 )
 نشر من قبل Gustavo Sarasua
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study the Double Exchange-Holstein (DE-H) model with an electron-phonon interaction $gamma$ coupled to magnetism. The analysis is performed combining a mean-field approximation for the double exchange interaction and the Lang-Firsov transformation for the electron-phonon interaction. Discontinuous magnetic transitions appear when the dependence of $g$ with $m$ is sufficiently large, resembling those experimentally observed in manganites. We observe that the characteristic resistivity peak that arises near the critical temperature appears for broad ranges of the system parameter values, unlike what occurs in a constant--$gamma$ model.

قيم البحث

اقرأ أيضاً

Establishing the physical mechanism governing exchange interactions is fundamental for exploring exotic phases such as the quantum spin liquids (QSLs) in real materials. In this work, we address exchange interactions in Sr2CuTe$_{1-x}$W$_{x}$O, a ser ies of double perovskites that realize the spin-1/2 square lattice and were suggested to harbor a QSL ground state arising from random distribution of non-magnetic ions. Our {it ab initio} multi-reference configuration interaction calculations show that replacing Te atoms with W atoms changes the dominant couplings from nearest to next-nearest neighbor explained by the crucial role of unoccupied states of non-magnetic ions in the super-superexchange mechanism. Combined with spin-wave theory simulations, our calculated exchange couplings provide an excellent description of the inelastic neutron scattering spectra of the end compounds, as well as explain the magnetic excitations in Sr2CuTe$_{0.5}$W$_{0.5}$O as emerging from the bond-disordered exchange couplings. Our results provide crucial understanding of the role of non-magnetic cations in exchange interactions paving the way to further exploration of QSL phases in bond-disordered materials.
The ability to tune exchange (magnetic) interactions between 3d transition metals in perovskite structures has proven to be a powerful route to discovery of novel properties. Here we demonstrate that the introduction of 3d-5d exchange pathways in dou ble perovskites enables additional tunability, a result of the large spatial extent of 5d wave functions. Using x-ray probes of magnetism and structure at high pressure, we show that compression of Sr2FeOsO6 drives an unexpected continuous change in the sign of Fe-Os exchange interactions and a transition from antiferromagnetic to ferrimagnetic order. We analyze the relevant electron-electron interactions, shedding light into fundamental differences with the more thoroughly studied 3d-3d systems.
The double exchange model describing interactions of itinerant electrons with localized spins is usually used to explain ferromagnetism in metals. We show that for a variety of crystal lattices of different dimensionalities and for a wide range of mo del parameters the ferromagnetic state is unstable against a non-collinear spiral magnetic order. We revisit the phase diagram of the double exchange model on a triangular lattice and show in a large part of the diagram the incommensurate spiral state has a lower energy than the previously discussed commensurate states. These results indicate that double exchange systems are inherently frustrated and can host unconventional spin orders.
283 - T. Shirakawa , S. Nishimoto , 2008
We study the ground-state properties of the double-chain Hubbard model coupled with ferromagnetic exchange interaction by using the weak-coupling theory, density-matrix renormalization group technique, and Lanczos exact-diagonalization method. We det ermine the ground-state phase diagram in the parameter space of the ferromagnetic exchange interaction and band filling. We find that, in high electron density regime, the spin gap opens and the spin-singlet $d_{xy}$-wave-like pairing correlation is most dominant, whereas in low electron density regime, the fully-polarized ferromagnetic state is stabilized where the spin-triplet $p_{y}$-wave-like pairing correlation is most dominant.
We study ground state properties of the double-exchange model on triangle chain in the classical limit on $t_{2g}$ spins. The ground state is determined by a competition among the kinetic energy of the $e_g$ electron, the antiferromagnetic exchange e nergy between the $t_{2g}$ spins, and frustration due to a geometric structure of the lattice. The phase diagrams are obtained numerically for two kinds of the models which differ only in the transfer integral being real or complex. The properties of the states are understood from the viewpoint of the spin-induced Peierls instability. The results suggest the existence of a chiral glass phase which is characterized by a local spin chirality and a continuous degeneracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا