ﻻ يوجد ملخص باللغة العربية
We investigate the capability of the UBVRIJHK photometric system to quantify star clusters in terms of age, metallicity and color excess by their integrated photometry in the framework of PEGASE single stellar population (SSP) models. The age-metallicity-extinction degeneracy was analyzed for various parameter combinations, assuming different levels of photometric accuracy. We conclude, that most of the parameter degeneracies, typical to the UBVRI photometric system, are broken in the case when the photometry data are supplemented with at least one infrared magnitude of the JHK passbands, with an accuracy better than ~0.05 mag. The presented analysis with no preassumptions on the distribution of photometric errors of star cluster models, provides estimate of the intrinsic capability of any photometric system to determine star cluster parameters from integrated photometry.
In the last decades we witnessed an increase in studies of open clusters of the Galaxy, especially because of the good determination for a wide range of values of parameters such as age, distance, reddening, and proper motion. The reliable determinat
Star clusters are good tracers for formation and evolution of galaxies. We compared different fitting methods by using spectra (or by combining photometry) to determine the physical parameters. We choose a sample of 17 star clusters in M33, which pre
(Abridged) This paper presents integrated magnitude and colours for synthetic clusters. The integrated parameters have been obtained for the whole cluster population as well as for the main-sequence (MS) population of star clusters. We have also esti
The GRAVITY instrument on the ESO VLTI pioneers the field of high-precision near-infrared interferometry by providing astrometry at the $10 - 100,mu$as level. Measurements at such high precision crucially depend on the control of systematic effects.
We performed extensive tests of the accuracy of atmospheric parameter determination for FGK stars based on the spectrum fitting procedure Spectroscopy Made Easy (SME). Our stellar sample consists of 13 objects, including the Sun, in the temperature r