ترغب بنشر مسار تعليمي؟ اضغط هنا

The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE

123   0   0.0 ( 0 )
 نشر من قبل Arthur Vigan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The SHINE project is a 500-star survey performed with SPHERE on the VLT for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. We adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a MCMC tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are $23.0_{-9.7}^{+13.5}%$, $5.8_{-2.8}^{+4.7}%$, and $12.6_{-7.1}^{+12.9}%$ for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1-75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of $5.7_{-2.8}^{+3.8}%$, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.

قيم البحث

اقرأ أيضاً

Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from $sim$5 to 300 AU. A careful assessment of the stellar properties is crucial for a pro per understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample were revisited, including for instance measurements from the GAIA Data Release 2.
Over the past decades, direct imaging has confirmed the existence of substellar companions (exoplanets or brown dwarfs) on wide orbits (>10 au) from their host stars. To understand their formation and evolution mechanisms, we have initiated in 2015 t he SPHERE infrared survey for exoplanets (SHINE), a systematic direct imaging survey of young, nearby stars to explore their demographics.} {We aim to detect and characterize the population of giant planets and brown dwarfs beyond the snow line around young, nearby stars. Combined with the survey completeness, our observations offer the opportunity to constrain the statistical properties (occurrence, mass and orbital distributions, dependency on the stellar mass) of these young giant planets.} {In this study, we present the observing and data analysis strategy, the ranking process of the detected candidates, and the survey performances for a subsample of 150 stars, which are representative of the full SHINE sample. The observations were conducted in an homogeneous way from February 2015 to February 2017 with the dedicated ground-based VLT/SPHERE instrument equipped with the IFS integral field spectrograph and the IRDIS dual-band imager covering a spectral range between 0.9 and 2.3 $mu$m. We used coronographic, angular and spectral differential imaging techniques to reach the best detection performances for this study down to the planetary mass regime.}
Young giant exoplanets emit infrared radiation that can be linearly polarized up to several percent. This linear polarization can trace: 1) the presence of atmospheric cloud and haze layers, 2) spatial structure, e.g. cloud bands and rotational flatt ening, 3) the spin axis orientation and 4) particle sizes and cloud top pressure. We introduce a novel high-contrast imaging scheme that combines angular differential imaging (ADI) and accurate near-infrared polarimetry to characterize self-luminous giant exoplanets. We implemented this technique at VLT/SPHERE-IRDIS and developed the corresponding observing strategies, the polarization calibration and the data-reduction approaches. By combining ADI and polarimetry we can characterize planets that can be directly imaged with a very high signal-to-noise ratio. We use the IRDIS pupil-tracking mode and combine ADI and principal component analysis to reduce speckle noise. We take advantage of IRDIS dual-beam polarimetric mode to eliminate differential effects that severely limit the polarimetric sensitivity (flat-fielding errors, differential aberrations and seeing), and thus further suppress speckle noise. To correct for instrumental polarization effects, we apply a detailed Mueller matrix model that describes the telescope and instrument and that has an absolute polarimetric accuracy $leq0.1%$. Using this technique we have observed the planets of HR 8799 and the (sub-stellar) companion PZ Tel B. Unfortunately, we do not detect a polarization signal in a first analysis. We estimate preliminary $1sigma$ upper limits on the degree of linear polarization of $sim1%$ and $sim0.1%$ for the planets of HR 8799 and PZ Tel B, respectively. The achieved sub-percent sensitivity and accuracy show that our technique has great promise for characterizing exoplanets through direct-imaging polarimetry.
In the broadest sense, the primary goal of exoplanet demographic surveys is to determine the frequency and distribution of planets as a function of as many of the physical parameters that may influence planet formation and evolution as possible, over as broad of a range of these parameters as possible. Empirically-determined exoplanet demographics provide the ground truth that all planet formation and evolution theories must reproduce. By comparing these planet distributions to the predictions of planet formation theories, we can begin to both test and refine these theories. In this chapter, we review the major results on exoplanet demographics to date. In this context, we identify a set of important open questions that remain to be answered. We outline the challenges of measuring the demographics of exoplanets using the variety of detection methods at our disposal. Finally, we summarize some of the future opportunities for refining and expanding our understanding of exoplanet demographics.
94 - M. Lombart , G. Chauvin , P. Rojo 2020
Dusty debris disks around pre- and main-sequence stars are potential signposts for the existence of planetesimals and exoplanets. Giant planet formation is therefore expected to play a key role in the evolution of the disk. This is indirectly confirm ed by extant sub-millimeter near-infrared images of young protoplanetary and cool dusty debris disks around main sequence stars usually showing substantial spatial structures. A majority of recent discoveries of imaged giant planets have been obtained around young, early-type stars hosting a circumstellar disk. In this context, we have carried out a direct imaging program designed to maximize our chances of giant planet discovery and targeting twenty-two young, early-type stars. About half of them show indication of multi-belt architectures. Using the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-constrast coronagraphic differential near-infrared images, we have conducted a systematic search in the close environment of these young, dusty and early-type stars. We confirmed that companions detected around HIP 34276, HIP 101800 and HIP 117452 are stationary background sources and binary companions. The companion candidates around HIP 8832, HIP 16095 and HIP 95619 are determined as background contamination. For stars for which we infer the presence of debris belts, a theoretical minimum mass for planets required to clear the debris gaps can be calculated . The dynamical mass limit is at least $0.1 M_J$ and can exceed $1 M_J$. Direct imaging data is typically sensitive to planets down to $sim 3.6 M_J$ at 1 $$, and $1.7 M_J$ in the best case. These two limits tightly constrain the possible planetary systems present around each target. These systems will be probably detectable with the next generation of planet imagers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا