ﻻ يوجد ملخص باللغة العربية
Despite the revolution in our knowledge resulting from the detection of planets around mature stars, we know almost nothing about planets orbiting young stars because rapid rotation and active photospheres preclude detection by radial velocities or transits and because direct imaging has barely penetrated the requisite range of high contrast and angular resolution. Of the techniques presently under consideration for the coming decade, only space-based astrometry offers the prospect of discovering gas giants (100 to >> 300 Mearth), lower mass systems such as icy giants (10 to 100 Mearth), and even a few rocky, super-Earths 300 Mearth) orbiting stars ranging in age from 1 to 100 Myr. Astrometry will complement high contrast imaging which should be able to detect gas giants (1~10 MJup) in orbits from a few to a few hundred AU. An astrometric survey in combination with imaging data for a subsample of objects will allow a detailed physical understanding of the formation and evolution of young gas giant planets impossible to achieve by any one technique.
As part of a national scientific network Pathways to Habitability the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize t
Stars and planets are the fundamental objects of the Universe. Their formation processes, though related, may differ in important ways. Stars almost certainly form from gravitational collapse and probably have formed this way since the first stars li
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical
The high occurrence rates of spiral arms and large central clearings in protoplanetary disks, if interpreted as signposts of giant planets, indicate that gas giants form commonly as companions to young stars ($<$ few Myr) at orbital separations of 10
In a previous study, we analysed the spectra of 230 cool ($T_mathrm{eff}$ < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here we interpret these abundances in ter