ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic coupling of colloidal CdSe nanocrystals monitored by thin-film positron-electron momentum density methods

187   0   0.0 ( 0 )
 نشر من قبل Bernardo Barbiellini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of temperature controlled annealing on the confined valence electron states in CdSe nanocrystal arrays, deposited as thin films, was studied using two-dimensional angular correlation of annihilation radiation (2D-ACAR). A reduction in the intensity by ~35% was observed in a feature of the positron annihilation spectrum upon removal of the pyridine capping molecules above 200 degrees Celsius in a vacuum. This reduction is explained by an increased electronic interaction of the valence orbitals of neighboring nanocrystals, induced by the formation of inorganic interfaces. Partial evaporation of the nanoporous CdSe layer and additional sintering into a polycrystalline thin film was observed at a relatively low temperature of ~486 degrees Celsius.



قيم البحث

اقرأ أيضاً

401 - L. Chai , W. Al-Sawai , Y. Gao 2013
Positron annihilation lifetime spectroscopy (PALS) and positron-electron momentum density (PEMD) studies on multilayers of PbSe nanocrystals (NCs), supported by transmission electron microscopy (TEM), show that positrons are strongly trapped at NC su rfaces, where they provide insight into the surface composition and electronic structure of PbSe NCs. Our analysis indicates abundant annihilation of positrons with Se electrons at the NC surfaces and with O electrons of the oleic ligands bound to Pb ad-atoms at the NC surfaces, which demonstrates that positrons can be used as a sensitive probe to investigate the surface physics and chemistry of nanocrystals inside multilayers. Ab-initio electronic structure calculations provide detailed insight in the valence and semi-core electron contributions to the positron-electron momentum density of PbSe. Both lifetime and PEMD are found to correlate with changes in the particle morphology characteristic of partial ligand removal.
Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes following the hot injection method are discussed. It was observed that the presence of water improves the nanotube coverage while Cl containing media are responsible for th e shape transformation of the nanoparticles and further attachment to the carbon lattice. The experiments also show that the mechanism taking place involves the right balance of several factors, namely, low passivated nanoparticle surface, particles with well-defined crystallographic facets, and interaction with an organics-free sp2 carbon lattice. Furthermore, this procedure can be extended to cover graphene by quantum dots.
A brief review is given of recent positron studies of metal and semiconductor nanocrystals. The prospects offered by positron annihilation as a sensitive method to access nanocrystal (NC) properties are described and compared with other experimental methods. The tunability of the electronic structure of nanocrystals underlies their great potential for application in many areas. Owing to their large surface-to-volume ratio, the surfaces and interfaces of NCs play a crucial role in determining their properties. Here we focus on positron 2D angular correlation of annihilation radiation (2D-ACAR) and (two-detector) Doppler studies for investigating surfaces and electronic properties of CdSe NCs.
We make a gradient correction to a new local density approximation form of positron-electron correlation. Then the positron lifetimes and affinities are probed by using these two approximation forms based on three electronic-structure calculation met hods including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach, the atomic superposition (ATSUP) approach and the projector augmented wave (PAW) approach. The differences between calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron transfers. We further find that a well implemented PAW method can give near-perfect agreement on both the positron lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW method is reduced within the best calculations. By comparing with experimental data, the new introduced gradient corrected correlation form is proved competitive for positron lifetime and affinity calculations.
193 - P. Boullay , V. Dorcet , O. Perez 2009
Calcium cobaltite thin films with a ratio Ca/Co=1 were grown on (101)-NdGaO3 substrate by the pulsed laser deposition technique. The structure of the deposited metastable phase is solved using a precession electron diffraction 3D dataset recorded fro m a cross-sectional sample. It is shown that an ordered oxygen-deficient Ca2Co2O5+d perovskite of the brownmillerite-type with lattice parameters a= 0.546nm, b=1.488nm and c=0.546nm (SG: Ibm2) has been stabilized using the substrate induced strain. The structure and microstructure of this metastable cobaltite is further discussed and compared to related bulk materials based on our transmission electron microscopy investigations
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا