ﻻ يوجد ملخص باللغة العربية
Calcium cobaltite thin films with a ratio Ca/Co=1 were grown on (101)-NdGaO3 substrate by the pulsed laser deposition technique. The structure of the deposited metastable phase is solved using a precession electron diffraction 3D dataset recorded from a cross-sectional sample. It is shown that an ordered oxygen-deficient Ca2Co2O5+d perovskite of the brownmillerite-type with lattice parameters a= 0.546nm, b=1.488nm and c=0.546nm (SG: Ibm2) has been stabilized using the substrate induced strain. The structure and microstructure of this metastable cobaltite is further discussed and compared to related bulk materials based on our transmission electron microscopy investigations
The equilibrium structure and functional properties exhibited by brownmillerite oxides, a family of perovskite-derived structures with alternating layers of $B$O$_6$ octahedra and $B$O$_4$ tetrahedra, viz., ordered arrangements of oxygen vacancies, i
The rich phase diagram of bulk Pr$_{1-x}$Ca$_{x}$MnO$_3$ resulting in a high tunability of physical properties gave rise to various studies related to fundamental research as well as prospective applications of the material. Importantly, as a consequ
The nitrogen substitution into the oxygen sites of several oxide materials leads to a reduction of the band gap to the visible light energy range, which makes these oxynitride semiconductors potential photocatalysts for efficient solar water splittin
Precession Electron Diffraction (PED) offers a number of advantages for crystal structure analysis and solving unknown structures using electron diffraction. The current article uses many-beam simulations of PED intensities, in combination with model
Ca2Co2O5 in the brownmillerite form was synthesized using a high-pressure optical-image floating zone furnace, and single crystals with dimensions up to 1.4x0.8x0.5 mm3 were obtained. At room temperature, Ca2Co2O5 crystallizes as a fully ordered brow