ترغب بنشر مسار تعليمي؟ اضغط هنا

Maps for general open quantum systems and a theory of linear quantum error correction

121   0   0.0 ( 0 )
 نشر من قبل Daniel A. Lidar
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that quantum subdynamics of an open quantum system can always be described by a Hermitian map, irrespective of the form of the initial total system state. Since the theory of quantum error correction was developed based on the assumption of completely positive (CP) maps, we present a generalized theory of linear quantum error correction, which applies to any linear map describing the open system evolution. In the physically relevant setting of Hermitian maps, we show that the CP-map based version of quantum error correction theory applies without modifications. However, we show that a more general scenario is also possible, where the recovery map is Hermitian but not CP. Since non-CP maps have non-positive matrices in their range, we provide a geometric characterization of the positivity domain of general linear maps. In particular, we show that this domain is convex, and that this implies a simple algorithm for finding its boundary.

قيم البحث

اقرأ أيضاً

Symmetry-breaking transitions are a well-understood phenomenon of closed quantum systems in quantum optics, condensed matter, and high energy physics. However, symmetry breaking in open systems is less thoroughly understood, in part due to the richer steady-state and symmetry structure that such systems possess. For the prototypical open system---a Lindbladian---a unitary symmetry can be imposed in a weak or a strong way. We characterize the possible $mathbb{Z}_n$ symmetry breaking transitions for both cases. In the case of $mathbb{Z}_2$, a weak-symmetry-broken phase guarantees at most a classical bit steady-state structure, while a strong-symmetry-broken phase admits a partially-protected steady-state qubit. Viewing photonic cat qubits through the lens of strong-symmetry breaking, we show how to dynamically recover the logical information after any gap-preserving strong-symmetric error; such recovery becomes perfect exponentially quickly in the number of photons. Our study forges a connection between driven-dissipative phase transitions and error correction.
We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feed-forward correction circui ts, remaining entirely passive in its operation. We construct a general mathematical framework for this technique then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.
88 - J. H. Wei , YiJing Yan 2011
Basing on the theory of Feynmans influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open sy stem at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
218 - Kosuke Fukui , Akihisa Tomita , 2018
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real ize large scale quantum computation with the GKP qubit [Phys. Rev. X. {bf 8}, 021054 (2018)], harnessing the virtue of analog information in the GKP qubits. In the present work, to reduce the number of qubits required for large scale quantum computation, we propose the tracking quantum error correction, where the logical-qubit level quantum error correction is partially substituted by the single-qubit level quantum error correction. In the proposed method, the analog quantum error correction is utilized to make the performances of the single-qubit level quantum error correction almost identical to those of the logical-qubit level quantum error correction in a practical noise level. The numerical results show that the proposed tracking quantum error correction reduces the number of qubits during a quantum error correction process by the reduction rate $left{{2(n-1)times4^{l-1}-n+1}right}/({2n times 4^{l-1}})$ for $n$-cycles of the quantum error correction process using the Knills $C_{4}/C_{6}$ code with the concatenation level $l$. Hence, the proposed tracking quantum error correction has great advantage in reducing the required number of physical qubits, and will open a new way to bring up advantage of the GKP qubits in practical quantum computation.
69 - Sisi Zhou , Liang Jiang 2019
For a generic set of Markovian noise models, the estimation precision of a parameter associated with the Hamiltonian is limited by the $1/sqrt{t}$ scaling where $t$ is the total probing time, in which case the maximal possible quantum improvement in the asymptotic limit of large $t$ is restricted to a constant factor. However, situations arise where the constant factor improvement could be significant, yet no effective quantum strategies are known. Here we propose an optimal approximate quantum error correction (AQEC) strategy asymptotically saturating the precision lower bound in the most general adaptive parameter estimation scheme where arbitrary and frequent quantum controls are allowed. We also provide an efficient numerical algorithm finding the optimal code. Finally, we consider highly-biased noise and show that using the optimal AQEC strategy, strong noises are fully corrected, while the estimation precision depends only on the strength of weak noises in the limiting case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا