ﻻ يوجد ملخص باللغة العربية
For a generic set of Markovian noise models, the estimation precision of a parameter associated with the Hamiltonian is limited by the $1/sqrt{t}$ scaling where $t$ is the total probing time, in which case the maximal possible quantum improvement in the asymptotic limit of large $t$ is restricted to a constant factor. However, situations arise where the constant factor improvement could be significant, yet no effective quantum strategies are known. Here we propose an optimal approximate quantum error correction (AQEC) strategy asymptotically saturating the precision lower bound in the most general adaptive parameter estimation scheme where arbitrary and frequent quantum controls are allowed. We also provide an efficient numerical algorithm finding the optimal code. Finally, we consider highly-biased noise and show that using the optimal AQEC strategy, strong noises are fully corrected, while the estimation precision depends only on the strength of weak noises in the limiting case.
The accumulation of quantum phase in response to a signal is the central mechanism of quantum sensing, as such, loss of phase information presents a fundamental limitation. For this reason approaches to extend quantum coherence in the presence of noi
We derive a necessary and sufficient condition for the possibility of achieving the Heisenberg scaling in general adaptive multi-parameter estimation schemes in presence of Markovian noise. In situations where the Heisenberg scaling is achievable, we
Noise is the greatest obstacle in quantum metrology that limits it achievable precision and sensitivity. There are many techniques to mitigate the effect of noise, but this can never be done completely. One commonly proposed technique is to repeatedl
By exploiting the exotic quantum states of a probe, it is possible to realize efficient sensors that are attractive for practical metrology applications and fundamental studies. Similar to other quantum technologies, quantum sensing is suffering from
Methods borrowed from the world of quantum information processing have lately been used to enhance the signal-to-noise ratio of quantum detectors. Here we analyze the use of stabilizer quantum error-correction codes for the purpose of signal detectio