ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Era in Extragalactic Background Light Measurements: The Cosmic History of Accretion, Nucleosynthesis and Reionization

126   0   0.0 ( 0 )
 نشر من قبل Asantha R. Cooray
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Brief Summary) What is the total radiative content of the Universe since the epoch of recombination? The extragalactic background light (EBL) spectrum captures the redshifted energy released from the first stellar objects, protogalaxies, and galaxies throughout cosmic history. Yet, we have not determined the brightness of the extragalactic sky from UV/optical to far-infrared wavelengths with sufficient accuracy to establish the radiative content of the Universe to better than an order of magnitude. Among many science topics, an accurate measurement of the EBL spectrum from optical to far-IR wavelengths, will address: What is the total energy released by stellar nucleosynthesis over cosmic history? Was significant energy released by non-stellar processes? Is there a diffuse component to the EBL anywhere from optical to sub-millimeter? When did first stars appear and how luminous was the reionization epoch? Absolute optical to mid-IR EBL spectrum to an astrophysically interesting accuracy can be established by wide field imagingat a distance of 5 AU or above the ecliptic plane where the zodiacal foreground is reduced by more than two orders of magnitude.



قيم البحث

اقرأ أيضاً

The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I co nsists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown on February 25th, 2009 and has one more planned flight in early 2010. We propose, after several additional flights of CIBER-I, an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times largerthan existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.
We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by s tar-formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from the Galaxy And Mass Assembly survey (GAMA) and Deep Extragalactic VIsible Legacy Survey (DEVILS), along with the Hubble Space Telescope (HST) archive and other deep survey datasets, in 9 multi-wavelength filters to measure the COB in the range from 0.35 micron to 2.2 micron. We derive the luminosity density in each band independently and show good agreement with recent and complementary estimates of the optical-EBL from very high-energy (VHE) experiments. Our error analysis suggests that the IGL and Gamma-ray measurements are now fully consistent to within ~10%, suggesting little need for any additional source of diffuse light beyond the known galaxy population. We use our revised IGL measurements to constrain the cosmic star-formation history, and place amplitude constraints on a number of recent estimates. As a consistency check, we can now demonstrate convincingly, that the CSFH, stellar mass growth, and the optical-EBL provide a fully consistent picture of galaxy evolution. We conclude that the peak of star-formation rate lies in the range 0.066-0.076 Msol/yr/Mpc^3 at a lookback time of 9.1 to 10.9 Gyrs.
76 - Asantha Cooray 2016
This review covers the measurements related to the extragalactic background light (EBL) intensity from gamma-rays to radio in the electromagnetic spectrum over 20 decades in the wavelength. The cosmic microwave background (CMB) remains the best measu red spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centered at 1 microns, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar system. The best measurements of COB come from an indirect technique involving Gamma-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 microns established an energetically important background with an intensity comparable to the optical background. This discovery paved the path for large aperture far-infrared and sub-millimeter observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 to 5 microns using a small aperture telescope observing either from the outer Solar system, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB.
Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z~6; the wavelength of these photons has been redshifted by (1+z) into the near infrared today and can be mea sured using instruments situated above the Earths atmosphere. First flying in February 2009, the Cosmic Infrared Background Experiment (CIBER) comprises four instruments housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband imaging instruments, make a detailed characterization of the spectral shape of the IR background using a low resolution spectrometer, and measure the absolute brightness of the Zodical light foreground with a high resolution spectrometer in each of our six science fields. This paper presents the scientific motivation for CIBER and details of its first two flights, including a review of the published scientific results from the first flight and an outlook for future reionization science with CIBER data.
The Extragalactic Background Light (EBL) is the integrated light from all the stars that have ever formed, and spans the IR-UV range. The interaction of very-high-energy (VHE: E>100 GeV) gamma-rays, emitted by sources located at cosmological distance s, with the intervening EBL results in electron-positron pair production that leads to energy-dependent attenuation of the observed VHE flux. This introduces a fundamental ambiguity in the interpretation of the measured VHE blazar spectra: neither the intrinsic spectra, nor the EBL, are separately known - only their combination is. In this paper we propose a method to measure the EBL photon number density. It relies on using simultaneous observations of blazars in the optical, X-ray, high-energy (HE: E>100 MeV) gamma-ray (from the Fermi telescope), and VHE gamma-ray (from Cherenkov telescopes) bands. For each source, the method involves best-fitting the spectral energy distribution (SED) from optical through HE gamma-rays (the latter being largely unaffected by EBL attenuation as long as z<1) with a Synchrotron Self-Compton (SSC) model. We extrapolate such best-fitting models into the VHE regime, and assume they represent the blazars intrinsic emission. Contrasting measured versus intrinsic emission leads to a determination of the gamma-gamma opacity to VHE photons - hence, upon assuming a specific cosmology, we derive the EBL photon number density. Using, for each given source, different states of emission will only improve the accuracy of the proposed method. We demonstrate this method using recent simultaneous multi-frequency observations of the blazar PKS2155-304 and discuss how similar observations can more accurately probe the EBL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا