ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper Limits on Pulsed Radio Emission from the 6.85 s X-ray Pulsar XTE J0103-728 in the Small Magellanic Cloud

115   0   0.0 ( 0 )
 نشر من قبل Fronefield Crawford
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray pulsations with a 6.85 s period were recently detected in the SMC and were subsequently identified as originating from the Be/X-ray binary system XTE J0103-728. The recent localization of the source of the X-ray emission has made a targeted search for radio pulsations from this source possible. The detection of pulsed radio emission from XTE J0103-728 would make it only the second system after PSR B1259-63 that is both a Be/X-ray binary and a radio pulsar. We observed XTE J0103-728 in Feb 2008 with the Parkes 64-m radio telescope soon after the identification of the source of X-ray pulsations was reported in order to search for corresponding radio pulsations. We used a continuous 6.4 hour observation with a 256 MHz bandwidth centered at 1390 MHz using the center beam of the Parkes multibeam receiver. In the subsequent data analysis, which included a folding search, a Fourier search, a fast-folding algorithm search, and a single-pulse search, no pulsed signals were found for trial dispersion measures (DMs) between 0 and 800 pc cm^-3. This DM range easily encompasses the expected values for sources in the SMC. We place an upper limit of ~45 mJy kpc^2 on the luminosity of periodic radio emission from XTE J0103-728 at the epoch of our observation, and we compare this limit to a range of luminosities measured for PSR B1259-63, the only Be/X-ray binary currently known to emit radio pulses. We also compare our limit to the radio luminosities of neutron stars having similarly long spin periods to XTE J0103-728. Since the radio pulses from PSR B1259-63 are eclipsed and undetectable during the portion of the orbit near periastron, repeated additional radio search observations of XTE J0103-728 may be valuable if it is undergoing similar eclipsing and if such observations are able to sample the orbital phase of this system well.



قيم البحث

اقرأ أيضاً

178 - F. Haberl , W. Pietsch 2008
A bright X-ray transient was seen during an XMM-Newton observation in the direction of the Small Magellanic Cloud (SMC) in October 2006. The EPIC data allow us to accurately locate the source and to investigate its temporal and spectral behaviour. X- ray spectra covering 0.2-10 keV and pulse profiles in different energy bands were extracted from the EPIC data. The detection of 6.85 s pulsations in the EPIC-PN data unambiguously identifies the transient with XTE J0103-728, discovered as 6.85 s pulsar by RXTE. The X-ray light curve during the XMM-Newton observation shows flaring activity of the source with intensity changes by a factor of two within 10 minutes. Modelling of pulse-phase averaged spectra with a simple absorbed power-law indicates systematic residuals which can be accounted for by a second emission component. For models implying blackbody emission, thermal plasma emission or emission from the accretion disk (disk-blackbody), the latter yields physically sensible parameters. The photon index of the power-law of ~0.4 indicates a relatively hard spectrum. The 0.2-10 keV luminosity was 2x10^{37} with a contribution of ~3% from the disk-blackbody component. A likely origin for the excess emission is reprocessing of hard X-rays from the neutron star by optically thick material near the inner edge of an accretion disk. From a timing analysis we determine the pulse period to 6.85401(1) s indicating an average spin-down of ~0.0017 s per year since the discovery of XTE J0103-728 in May 2003. The X-ray properties and the identification with a Be star confirm XTE J0103-728 as Be/X-ray binary transient in the SMC.
We have studied the variability of PSR J0529-6652, a radio pulsar in the LMC, using observations conducted at 1390 MHz with the Parkes 64-m telescope. PSR J0529-6652 is detectable as a single pulse emitter, with amplitudes that classify the pulses as giant pulses. This makes PSR J0529-6652 the second known giant pulse emitter in the LMC, after PSR B0540-69. The fraction of the emitted pulses detectable from PSR J0529-6652 at this frequency is roughly two orders of magnitude greater than it is for either PSR B0540-69 or the Crab pulsar (if the latter were located in the LMC). We have measured a pulse nulling fraction of 83.3 pm 1.5% and an intrinsic modulation index of 4.07 pm 0.29 for PSR J0529-6652. The modulation index is significantly larger than values previously measured for typical radio pulsars but is comparable to values reported for members of several other neutron star classes. The large modulation index, giant pulses, and large nulling fraction suggest that this pulsar is phenomenologically more similar to these other, more variable sources, despite having spin and physical characteristics that are typical of the unrecycled radio pulsar population. The large modulation index also does not appear to be consistent with the small value predicted for this pulsar by a model of polar cap emission outlined by Gil & Sendyk (2000). This conclusion depends to some extent on the assumption that PSR J0529-6652 is exhibiting core emission, as suggested by its simple profile morphology, narrow profile width, and previously measured profile polarization characteristics.
We model the present day, observable, normal radio pulsar population of the Small Magellanic Cloud (SMC). The pulsars are generated with SeBa, a binary population synthesis code that evolves binaries and the constituent stellar objects up to remnant formation and beyond. We define radio pulsars by selecting neutron stars that satisfy a selection of criteria defined by Galactic pulsars, and apply the detection thresholds of previous and future SMC pulsar surveys.The number of synthesised and recovered pulsars are exceptionally sensitive to the assumed star formation history and applied radio luminosity model, but is not affected extensively by the assumed common envelope model, metallicity, and neutron star kick velocity distribution. We estimate that the SMC formed (1.6$pm$0.3)$times 10^4$ normal pulsars during the last 100 Myrs. We study which pulsars could have been observed by the Parkes multibeam survey of the SMC, by applying the surveys specific selection effects, and recover 4.0$pm$0.8 synthetic pulsars.This is in agreement with their five observed pulsars. We also apply a proposed MeerKAT configuration for the upcoming SMC survey, and predict that the MeerKAT survey will detect 17.2$pm$2.5 pulsars.
60 - S. Laycock 2002
On December 27th 2000 during our regular SMC monitoring program with Rossi X-ray Timing Explorer, strong pulsations were detected with a period of 4.78 seconds. Subsequent slew observations performed on Jan 9th and 13th across the field of view allow ed localisation of the pulsars position to RA: 0 52 17, Dec: 72 19 51 (J2000). The outburst continued until Jan 24th, 7 PCA observations were obtained during this period, yielding a maximum X-ray luminosity ~10^38 ergs/s. Following calculation of the pulsar position, optical observations of the RXTE error box were made on Jan 16th 2001 with the 1m telescope of the South African Astronomical Observatory (SAAO) while the source was still in X-ray outburst. Candidate Be stars identified from their photometric colours were subsequently observed with the SAAO 1.9m on Nov 7th 2001 to obtain spectra. Only one of the photometrically identified stars [MA93]537 showed prominent H$alpha$ emission, with a double peaked line-profile (EW= -43.3+/-0.7 A, separation velocity= 200+/-15 km/s) confirming the presence of a substantial circumstellar disk.
Fast Radio Bursts (FRBs) are short lived ($sim$ msec), energetic transients (having a peak flux density of $sim$ Jy) with no known prompt emission in other energy bands. We present results of a search for prompt X-ray emissions from 41 FRBs using the Cadmium Zinc Telluride Imager (CZTI) on AstroSat which continuously monitors $sim70%$ of the sky. Our searches on various timescales in the 20-200 keV range, did not yield any counterparts in this hard X-ray band. We calculate upper limits on hard X-ray flux, in the same energy range and convert them to upper bounds for $eta$: the ratio X-ray to radio fluence of FRBs. We find $eta leq 10^{8-10}$ for hard X-ray emission. Our results will help constrain the theoretical models of FRBs as the models become more quantitative and nearer, brighter FRBs are discovered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا