ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of the Small Magellanic Cloud: X-ray outburst of the 6.85 s pulsar XTE J0103-728

133   0   0.0 ( 0 )
 نشر من قبل Frank Haberl
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A bright X-ray transient was seen during an XMM-Newton observation in the direction of the Small Magellanic Cloud (SMC) in October 2006. The EPIC data allow us to accurately locate the source and to investigate its temporal and spectral behaviour. X-ray spectra covering 0.2-10 keV and pulse profiles in different energy bands were extracted from the EPIC data. The detection of 6.85 s pulsations in the EPIC-PN data unambiguously identifies the transient with XTE J0103-728, discovered as 6.85 s pulsar by RXTE. The X-ray light curve during the XMM-Newton observation shows flaring activity of the source with intensity changes by a factor of two within 10 minutes. Modelling of pulse-phase averaged spectra with a simple absorbed power-law indicates systematic residuals which can be accounted for by a second emission component. For models implying blackbody emission, thermal plasma emission or emission from the accretion disk (disk-blackbody), the latter yields physically sensible parameters. The photon index of the power-law of ~0.4 indicates a relatively hard spectrum. The 0.2-10 keV luminosity was 2x10^{37} with a contribution of ~3% from the disk-blackbody component. A likely origin for the excess emission is reprocessing of hard X-rays from the neutron star by optically thick material near the inner edge of an accretion disk. From a timing analysis we determine the pulse period to 6.85401(1) s indicating an average spin-down of ~0.0017 s per year since the discovery of XTE J0103-728 in May 2003. The X-ray properties and the identification with a Be star confirm XTE J0103-728 as Be/X-ray binary transient in the SMC.

قيم البحث

اقرأ أيضاً

X-ray pulsations with a 6.85 s period were recently detected in the SMC and were subsequently identified as originating from the Be/X-ray binary system XTE J0103-728. The recent localization of the source of the X-ray emission has made a targeted sea rch for radio pulsations from this source possible. The detection of pulsed radio emission from XTE J0103-728 would make it only the second system after PSR B1259-63 that is both a Be/X-ray binary and a radio pulsar. We observed XTE J0103-728 in Feb 2008 with the Parkes 64-m radio telescope soon after the identification of the source of X-ray pulsations was reported in order to search for corresponding radio pulsations. We used a continuous 6.4 hour observation with a 256 MHz bandwidth centered at 1390 MHz using the center beam of the Parkes multibeam receiver. In the subsequent data analysis, which included a folding search, a Fourier search, a fast-folding algorithm search, and a single-pulse search, no pulsed signals were found for trial dispersion measures (DMs) between 0 and 800 pc cm^-3. This DM range easily encompasses the expected values for sources in the SMC. We place an upper limit of ~45 mJy kpc^2 on the luminosity of periodic radio emission from XTE J0103-728 at the epoch of our observation, and we compare this limit to a range of luminosities measured for PSR B1259-63, the only Be/X-ray binary currently known to emit radio pulses. We also compare our limit to the radio luminosities of neutron stars having similarly long spin periods to XTE J0103-728. Since the radio pulses from PSR B1259-63 are eclipsed and undetectable during the portion of the orbit near periastron, repeated additional radio search observations of XTE J0103-728 may be valuable if it is undergoing similar eclipsing and if such observations are able to sample the orbital phase of this system well.
124 - F. Haberl , P. Eger , W. Pietsch 2008
To investigate candidates for Be/X-ray binaries in the Small Magellanic Cloud (SMC), we observed a region around the emission nebula N19 with XMM-Newton in October 2006. We analysed the EPIC data of the detected point sources to derive their spectral and temporal characteristics. We detected X-ray pulsations with a period of 25.550(2) s from the second-brightest source in the field, which we designate XMMU J004814.1-731003. The X-ray spectrum is well modelled by a highly absorbed (NH = 5x10^22) powerlaw with photon index 1.33+/-0.27. The precise X-ray position allows us to identify a Be star as the optical counterpart. XMMU J004814.1-731003 is located within the error circle of the transient ASCA source AX J0048.2-7309, but its position is inconsistent with that of the proposed optical counterpart of AX J0048.2-7309 (the emission line star [MA93] 215). It remains unclear if XMMU J004814.1-731003 is associated with AX J0048.2-7309. XMMU J004814.1-731003 might be identical to an RXTE pulsar that was discovered with a period of 25.5 s, but which is listed as 51 s pulsar in the recent literature.
110 - R. Sturm , F. Haberl , M.J. Coe 2010
One of the goals of the XMM-Newton survey of the Small Magellanic Cloud is the study of the Be/X-ray binary population. During one of our first survey observations a bright new transient - XMMUJ004814.0-732204 - was discovered. We present the analysi s of the EPIC X-ray data together with optical observations, to investigate the spectral and temporal characteristics of XMMUJ004814.0-732204. We found coherent X-ray pulsations in the EPIC data with a period of (11.86642 +/- 0.00017) s. The X-ray spectrum can be modelled by an absorbed power-law with indication for a soft excess. Depending on the modelling of the soft X-ray spectrum, the photon index ranges between 0.53 and 0.66. We identify the optical counterpart as a B = 14.9mag star which was monitored during the MACHO and OGLE-III projects. The optical light curves show regular outbursts by ~0.5 mag in B and R and up to 0.9 mag in I which repeat with a time scale of about 1000 days. The OGLE-III optical colours of the star are consistent with an early B spectral type. An optical spectrum obtained at the 1.9 m telescope of the South African Astronomical Observatory in December 2009 shows H_alpha emission with an equivalent width of 3.5 +/- 0.6 A. The X-ray spectrum and the detection of pulsations suggest that XMMUJ004814.0-732204 is a new high mass X-ray binary pulsar in the SMC. The long term variability and the H_alpha emission line in the spectrum of the optical counterpart identify it as a Be/X-ray binary system.
60 - S. Laycock 2002
On December 27th 2000 during our regular SMC monitoring program with Rossi X-ray Timing Explorer, strong pulsations were detected with a period of 4.78 seconds. Subsequent slew observations performed on Jan 9th and 13th across the field of view allow ed localisation of the pulsars position to RA: 0 52 17, Dec: 72 19 51 (J2000). The outburst continued until Jan 24th, 7 PCA observations were obtained during this period, yielding a maximum X-ray luminosity ~10^38 ergs/s. Following calculation of the pulsar position, optical observations of the RXTE error box were made on Jan 16th 2001 with the 1m telescope of the South African Astronomical Observatory (SAAO) while the source was still in X-ray outburst. Candidate Be stars identified from their photometric colours were subsequently observed with the SAAO 1.9m on Nov 7th 2001 to obtain spectra. Only one of the photometrically identified stars [MA93]537 showed prominent H$alpha$ emission, with a double peaked line-profile (EW= -43.3+/-0.7 A, separation velocity= 200+/-15 km/s) confirming the presence of a substantial circumstellar disk.
83 - J.M. Miller 2002
We present an analysis of the first high-resolution spectra measured from an accretion-driven millisecond X-ray pulsar in outburst. We observed XTE J1751-305 with XMM-Newton on 2002 April 7 for approximately 35 ksec. Using a simple absorbed blackbody plus power-law model, we measure an unabsorbed flux of (6.6 +/- 0.1) * 10^(-10) erg/cm^2/s (0.5--10.0 keV). A hard power-law component (Gamma = 1.44 +/- 0.01) contributes 83% of the unabsorbed flux in the 0.5-10.0 keV band, but a blackbody component (kT = 1.05 +/- 0.01 keV) is required. We find no clear evidence for narrow or broad emission or absorption lines in the time-averaged spectra, and the sensitivity of this observation has allowed us to set constraining upper-limits on the strength of important features. The lack of line features is at odds with spectra measured from some other X-ray binaries which share some similarities with XTE J1751-305. We discuss the implications of these findings on the accretion flow geometry in XTE J1751-305.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا