ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistently melting crystals

43   0   0.0 ( 0 )
 نشر من قبل Klaus Larjo
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Klaus Larjo




اسأل ChatGPT حول البحث

Recently Ooguri and Yamazaki proposed a statistical model of melting crystals to count BPS bound states of certain D-brane configurations on toric Calabi--Yau manifolds [arXiv:0811.2801]. This construction relied on a set of consistency conditions on the corresponding brane tiling, and in this note I show that these conditions are satisfied for any physical brane tiling; they follow from the conformality of the low energy field theory on the D-branes. As a byproduct I also provide a simple direct proof that any physical brane tiling has a perfect matching.

قيم البحث

اقرأ أيضاً

In superionic compounds one component pre-melts providing high ionic conductivity to solid state electrolytes. Here, we find sublattice melting in colloidal crystals of oppositely charged particles that are highly asymmetric in size and charge in sal t solutions. The small particles in ionic compounds melt when the temperature increases forming a superionic phase. These delocalized small particles in a crystal of large oppositely charged particles, in contrast to superionic phases in atomic systems, form crystals with non-electroneutral stoichiometric ratios. This generates structures with multiple domains of ionic crystals in percolated superionic phases with adjustable stoichiometries.
We investigate the quantum melting of one dimensional crystals that are realized in an atomic lattice in which ground state atoms are laser excited to two Rydberg states. We focus on a regime where both, intra- and inter-state density-density interac tions as well as coherent exchange interactions contribute. We determine stable crystalline phases in the classical limit and explore their melting under quantum fluctuations introduced by the excitation laser as well as two-body exchange. We find that within a specific parameter range quantum fluctuations introduced by the laser can give rise to a devils staircase structure which one might associate with transitions in the classical limit. The melting through exchange interactions is shown to also proceed in a step-like fashion, in case of small crystals, due to the proliferation of Rydberg spinwaves.
We discuss mesons in thermalizing gluon backgrounds in the N=2 supersymmetric QCD using the gravity dual. We numerically compute the dynamics of a probe D7-brane in the Vaidya-AdS geometry that corresponds to a D3-brane background thermalizing from z ero to finite temperatures by energy injection. In static backgrounds, it has been known that there are two kinds of brane embeddings where the brane intersects the black hole or not. They correspond to the phases with melted or stable mesons. In our dynamical setup, we obtain three cases depending on final temperatures and injection time scales. The brane stays outside of the black hole horizon when the final temperature is low, while it intersects the horizon and settles down to the static equilibrium state when the final temperature is high. Between these two cases, we find the overeager case where the brane dynamically intersects the horizon although the final temperature is not high enough for a static brane to intersect the horizon. The interpretation of this phenomenon in the dual field theory is meson melting due to non-thermal effects caused by rapid energy injection. In addition, we comment on the late time evolution of the brane and a possibility of its reconnection.
We report on a novel and flexible experiment to investigate the non-equilibrium melting behaviour of model crystals made from charged colloidal spheres. In a slit geometry polycrystalline material formed in a low salt region is driven by hydrostatic pressure up an evolving gradient in salt concentration and melts at large salt concentration. Depending on particle and initial salt concentration, driving velocity and the local salt concentration complex morphologic evolution is observed. Crystal-melt interface positions and the melting velocity are obtained quantitatively from time resolved Bragg- and polarization microscopic measurements. A simple theoretical model predicts the interface to first advance, then for balanced drift and melting velocities to become stationary at a salt concentration larger than the equilibrium melting concentration. It also describes the relaxation of the interface to its equilibrium position in a stationary gradient after stopping the drive in different manners. We further discuss the influence of the gradient strength on the resulting interface morphology and a shear induced morphologic transition from polycrystalline to oriented single crystalline material before melting.
We use gauge/gravity duality to investigate the effect of thermal fluctuations on the dissociation of the quarkonium meson in strongly coupled $(3+1)$-dimensional gauge theories. This is done by studying the instability and probable first order phase transition of a probe D7-brane in the dual gravity theory. We explicitly show that for the Minkowski embeddings with their tips close to the horizon in the background, the long wavelength thermal fluctuations lead to an imaginary term in their action signaling an instability in the system. Due to this instability, a phase transition is expected. On the gauge theory side, it indicates that the quarkonium mesons are not stable and dissociate in the plasma. Identifying the imaginary part of the probe barne action with the thermal width of the mesons, we observe that the thermal width increases as one decreases the mass of the quarks. Also keeping the mass fixed, thermal width increases by temperature as expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا