ﻻ يوجد ملخص باللغة العربية
We investigate the quantum melting of one dimensional crystals that are realized in an atomic lattice in which ground state atoms are laser excited to two Rydberg states. We focus on a regime where both, intra- and inter-state density-density interactions as well as coherent exchange interactions contribute. We determine stable crystalline phases in the classical limit and explore their melting under quantum fluctuations introduced by the excitation laser as well as two-body exchange. We find that within a specific parameter range quantum fluctuations introduced by the laser can give rise to a devils staircase structure which one might associate with transitions in the classical limit. The melting through exchange interactions is shown to also proceed in a step-like fashion, in case of small crystals, due to the proliferation of Rydberg spinwaves.
Spin models are the prime example of simplified manybody Hamiltonians used to model complex, real-world strongly correlated materials. However, despite their simplified character, their dynamics often cannot be simulated exactly on classical computer
A defining property of particles is their behavior under exchange. In two dimensions anyons can exist which, opposed to fermions and bosons, gain arbitrary relative phase factors or even undergo a change of their type. In the latter case one speaks o
Over the last decade, systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems, in particular spin systems. Here, w
We theoretically investigate the dynamics of a gas of strongly interacting Rydberg atoms subject to a time-domain Ramsey interferometry protocol. The many-body dynamics is governed by an Ising-type Hamiltonian with long range interactions of tunable
The quest to realize topological band structures in artificial matter is strongly focused on lattice systems, and only quantum Hall physics is known to appear naturally also in the continuum. In this letter, we present a proposal based on a two-dimen