ﻻ يوجد ملخص باللغة العربية
Optical studies of starbursts, AGN and their connections usually leave out galaxies whose emission lines are too weak to warrant reliable measurement and classification. Yet, weak line galaxies abound, and deserve a closer look. We show that these galaxies are either massive, metal rich star-forming systems, or, more often, LINERs. From our detailed stellar population analysis, we find that these LINERs have stopped forming stars long ago. Moreover, their ionizing radiation field is amazingly consistent with that expected from their old stellar populations alone. The black-hole in the centers of these massive, early-type galaxies is not active enough to overwhelm stellar ionization, and thus, despite their looks, they should not be called AGN.
The mass of super massive black holes at the centre of galaxies is tightly correlated with the mass of the galaxy bulges which host them. This observed correlation implies a mechanism of joint growth, but the precise physical processes responsible ar
The merger of two spiral galaxies is believed to be one of the main channels for the production of elliptical and early-type galaxies. In the process, the system becomes an (ultra) luminous infrared galaxy, or (U)LIRG, that morphs to a quasar, to a K
Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses SDSS, GALEX, and WISE observations to identify
We present the discovery of a small kinematically decoupled core of 0.2$^{primeprime}$ (60 pc) in radius as well as an outflow jet in the archetypical AGN-starburst composite galaxy NGC 7130 from integral field data obtained with the adaptive optics-
We demonstrate a robust method of resolving the star-formation and AGN contributions to emission lines using two very well known AGN systems: NGC 1365, and NGC 1068, using the high spatial resolution data from the TYPHOON/PrISM survey. We expand the