ترغب بنشر مسار تعليمي؟ اضغط هنا

Starburst-AGN mixing: TYPHOON observations of NGC 1365, NGC 1068, and the effect of spatial resolution on the AGN fraction

62   0   0.0 ( 0 )
 نشر من قبل Joshua D'Agostino
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a robust method of resolving the star-formation and AGN contributions to emission lines using two very well known AGN systems: NGC 1365, and NGC 1068, using the high spatial resolution data from the TYPHOON/PrISM survey. We expand the previous method of calculating the AGN fraction by using theoretical-based model grids rather than empirical points. The high spatial resolution of the TYPHOON/PrISM observations show evidence of both star formation and AGN activity occurring in the nuclei of the two galaxies. We rebin the data to the lower resolutions, typically found in other integral field spectroscopy surveys such as SAMI, MaNGA, and CALIFA. The results show that when rebinned from the native resolution of TYPHOON (< 200 pc/pixel) to 1 kpc/pixel, the effects include a roughly 3 kpc increase in the radius of measured AGN activity, and a factor of 2 to 7 increase in the detection of low surface brightness features such as shocks. All of this information is critical, because information on certain physical processes may be lost at varying resolutions. We make recommendations for analysing data at current IFU survey resolutions.



قيم البحث

اقرأ أيضاً

59 - A. Zaino 2020
We present the results of the latest NuSTAR monitoring campaign of the Compton-thick Seyfert 2 galaxy NGC 1068, composed of four $sim$50 ks observations performed between July 2017 and February 2018 to search for flux and spectral variability on time scales from 1 to 6 months. We detect one unveiling and one eclipsing event with timescales less than 27 and 91 days, respectively, ascribed to Compton-thick material with $N_H=(1.8pm0.8)times10^{24}$ cm$^{-2}$ and $N_Hgeq(2.4pm0.5)times10^{24}$ cm$^{-2}$ moving across our line of sight. This gas is likely located in the innermost part of the torus or even further inward, thus providing further evidence of the clumpy structure of the circumnuclear matter in this source. Taking advantage of simultaneous Swift-XRT observations, we also detected a new flaring ULX, at a distance $dsim$30 (i.e. $sim$2 kpc) from the nuclear region of NGC 1068, with a peak X-ray intrinsic luminosity of $(3.0pm0.4)times10^{40}$ erg s$^{-1}$ in the 2-10 keV band.
119 - J. H. Knapen , S. Comeron , 2018
We present the discovery of a small kinematically decoupled core of 0.2$^{primeprime}$ (60 pc) in radius as well as an outflow jet in the archetypical AGN-starburst composite galaxy NGC 7130 from integral field data obtained with the adaptive optics- assisted MUSE-NFM instrument on the VLT. Correcting the already good natural seeing at the time of our science verification observations with the four-laser GALACSI AO system, we reach an unprecedented spatial resolution at optical wavelengths of around 0.15$^{primeprime}$. We confirm the existence of star-forming knots arranged in a ring of 0.58$^{primeprime}$ (185 pc) in radius around the nucleus, previously observed from UV and optical Hubble Space Telescope and CO(6-5) ALMA imaging. We determine the position of the nucleus as the location of a peak in gas velocity dispersion. A plume of material extends towards the NE from the nucleus until at least the edge of our field of view at 2$^{primeprime}$ (640 pc) radius which we interpret as an outflow jet originating in the AGN. The plume is not visible morphologically, but is clearly characterised in our data by emission-line ratios characteristic of AGN emission, enhanced gas velocity dispersion, and distinct non-circular gas velocities. Its orientation is roughly perpendicular to the line of nodes of the rotating host galaxy disc. A circumnuclear area of positive and negative velocities of 0.2$^{primeprime}$ in radius indicates a tiny inner disc, which can only be seen after combining the integral field spectroscopic capabilities of MUSE with adaptive optics.
119 - T.V. Ricci 2010
NGC 7582 was identified as a Starburst galaxy in the optical cite[(Veron et al. 1981)]{Veron et al.(1981)} but its X-Ray emission is typical of a Seyfert 1 galaxy cite[(Ward et al. 1978)]{Ward et al.(1978)}. We analyzed a datacube of this object obta ined with the GMOS-IFU on the Gemini-South telescope. After a subtraction of the stellar component using the {sc starlight} code cite[(Cid Fernandes et al. 2005)]{Cid Fernandes et al. (2005)}, we looked for optical signatures of the AGN. We detected a broad $Halpha$ component (figure ref{fig1}) in the source where cite[Bianchi et al.(2007)]{Bianchi et al.(2007)} identified the AGN in an HST optical image. We also found a broad $Hbeta$ feature (figure ref{fig2}), but its emission reveals a extended source. We suggest that it is the light of the AGN scattered in the ionization cone. We propose that NGC 7582 is a Seyfert 1 galaxy. A number of other hot-spots and Wolf-Rayet features were also identified.
Dust emission, an important diagnostic of star formation and ISM mass throughout the Universe, can be powered by sources unrelated to ongoing star formation. In the framework of the DustPedia project we have set out to disentangle the radiation of th e ongoing star formation from that of the older stellar populations. This is done through detailed, 3D radiative transfer simulations of face-on spiral galaxies. In this particular study, we focus on NGC 1068, which contains an active galactic nucleus (AGN). The effect of diffuse dust heating by AGN (beyond the torus) was so far only investigated for quasars. This additional dust heating source further contaminates the broadband fluxes on which classic galaxy modelling tools rely to derive physical properties. We aim to fit a realistic model to the observations of NGC 1068 and quantify the contribution of the several dust heating sources. Our model is able to reproduce the global spectral energy distribution of the galaxy. It matches the resolved optical and infrared images fairly well, but deviates in the UV and the submm. We find a strong wavelength dependency of AGN contamination to the broadband fluxes. It peaks in the MIR, drops in the FIR, but rises again at submm wavelengths. We quantify the contribution of the dust heating sources in each 3D dust cell and find a median value of 83% for the star formation component. The AGN contribution is measurable at the percentage level in the disc, but quickly increases in the inner few 100 pc, peaking above 90%. This is the first time the phenomenon of an AGN heating the diffuse dust beyond its torus is quantified in a nearby star-forming galaxy. NGC 1068 only contains a weak AGN, meaning this effect can be stronger in galaxies with a more luminous AGN. This could significantly impact the derived star formation rates and ISM masses for such systems.
We investigate the photoionised X-ray emission line regions (ELRs) within the Seyfert 2 galaxy NGC 1068, to determine if there are any characteristic changes between observations taken fourteen years apart. We compare XMM-Newton observations collecte d in 2000 and 2014, simultaneously fitting the reflection grating spectrometer (RGS) and EPIC-pn spectra of each epoch, for the first time, with the photoionisation model, PION, in SPEX. We find that four PION components are required to fit the majority of the emission lines in the spectra of NGC 1068, with $log xi=1-4$, $log N_H>26 m^{-2}$, and $v_{out}=-100$ to $-600 kms^{-1}$ for both epochs. Comparing the ionisation state of the components shows almost no difference between the two epochs, while there is an increase in the total column density. To estimate the locations of these plasma regions from the central black hole we compare distance methods, excluding the variability arguments as there is no spectral change between observations. Although the methods are unable to constrain the distances, the locations are consistent with the narrow line region, with the possibility of the higher ionised component being part of the broad line region, but we cannot conclude this for certain. In addition, we find evidence for emission from collisionally ionised plasma, while previous analysis had suggested that collisional plasma emission was unlikely. However, although PION is unable to account for the FeXVII emission lines at 15 and 17 AA, we do not rule out that photoexcitation is a valid processes to produce these lines too. NGC 1068 has not changed, both in terms of the observed spectra or from our modelling, within the 14 year time period between observations. This suggests that the ELRs are fairly static relative to the 14 year time frame between observations, or there is no dramatic change in the black hole variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا