ﻻ يوجد ملخص باللغة العربية
The Efimov effect represents a cornerstone in few-body physics. Building on the recent experimental observation with ultracold atoms, we report the first experimental signature of Efimov physics in a heteronuclear system. A mixture of $^{41}$K and $^{87}$Rb atoms was cooled to few hundred nanoKelvins and stored in an optical dipole trap. Exploiting a broad interspecies Feshbach resonance, the losses due to three-body collisions were studied as a function of the interspecies scattering length. We observe an enhancement of the three-body collisions for three distinct values of the interspecies scattering lengths, both positive and negative. We attribute the two features at negative scattering length to the existence of two kind of Efimov trimers, namely KKRb and KRbRb.
In 1970 V. Efimov predicted a puzzling quantum-mechanical effect that is still of great interest today. He found that three particles subjected to a resonant pairwise interaction can join into an infinite number of loosely bound states even though ea
The field of few-body physics has originally been motivated by understanding nuclear matter. New model systems to experimentally explore few-body quantum systems can now be realized in ultracold gases with tunable interactions. Albeit the vastly diff
We report on the observation of ultracold heteronuclear Feshbach molecules. Starting with a $^{87}$Rb BEC and a cold atomic gas of $^{85}$Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. Even tho
We study three- and four-body Efimov physics in a heteronuclear atomic system with three identical heavy bosonic atoms and one light atom. We show that exchange of the light atom between the heavy atoms leads to both three- and four-body features in
We have observed three Feshbach resonances in collisions between lithium-6 and sodium-23 atoms. The resonances were identified as narrow loss features when the magnetic field was varied. The molecular states causing these resonances have been identif