ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions

137   0   0.0 ( 0 )
 نشر من قبل Francesco Giazotto
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Josephson effect is a fundamental quantum phenomenon consisting in the appearance of a dissipationless supercurrent in a weak link between two superconducting (S) electrodes. While the mechanism leading to the Josephson effect is quite general, i.e., Andreev reflections at the interface between the S electrodes and the weak link, the precise physical details and topology of the junction drastically modify the properties of the supercurrent. Specifically, a strong enhancement of the critical supercurrent $I_C$ is expected to occur when the topology of the junction allows the emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be ascribed to any known conventional phenomenon existing in Josephson junctions including, for instance, Fraunhofer-like diffraction or a $pi$-state behavior. We also investigate an unconventional model related to inhomogenous Zeeman field caused by magnetic focusing, and note that it can not account for the observed behaviour. Finally, we consider these results in the context of topological superconductivity, and show that the observed $I_C$ enhancement is compatible with a magnetic field-induced topological transition of the junction.



قيم البحث

اقرأ أيضاً

We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
Semiconductor-superconductor hybrid systems provide a promising platform for hosting unpaired Majorana fermions towards the realisation of fault-tolerant topological quantum computing. In this study, we employ the Keldysh Non-Equilibrium Greens funct ion formalism to model quantum transport in normal-superconductor junctions. We analyze III-V semiconductor nanowire Josephson junctions (InAs/Nb) using a three-dimensional discrete lattice model described by the Bogolubov-de Gennes Hamiltonian in the tight-binding approximation, and compute the Andreev bound state spectrum and current-phase relations. Recent experiments [Zuo et al., Phys. Rev. Lett. 119,187704 (2017)] and [Gharavi et al., arXiv:1405.7455v2 (2014)] reveal critical current oscillations in these devices, and our simulations confirm these to be an interference effect of the transverse sub-bands in the nanowire. We add disorder to model coherent scattering and study its effect on the critical current oscillations, with an aim to gain a thorough understanding of the experiments. The oscillations in the disordered junction are highly sensitive to the particular realisation of the random disorder potential, and to the gate voltage. A macroscopic current measurement thus gives us information about the microscopic profile of the junction. Finally, we study dephasing in the channel by including elastic phase-breaking interactions. The oscillations thus obtained are in good qualitative agreement with the experimental data, and this signifies the essential role of phase-breaking processes in III-V semiconductor nanowire Josephson junctions.
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field per pendicular to the plane of the Josephson junction on the critical current has been studied. The observed monotonous decrease of the critical current with magnetic field is explained by the magnetic pair-breaking effect in planar Josephson junctions of ultra-narrow width [J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007)]
Junctions created by coupling two superconductors via a semiconductor nanowire in the presence of high magnetic fields are the basis for detection, fusion, and braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson junctions and find that their critical currents in the few mode regime are strongly suppressed by magnetic field. Furthermore, the dependence of the critical current on magnetic field exhibits gate-tunable nodes. Based on a realistic numerical model we conclude that the Zeeman effect induced by the magnetic field and the spin-orbit interaction in the nanowire are insufficient to explain the observed evolution of the Josephson effect. We find the interference between the few occupied one-dimensional modes in the nanowire to be the dominant mechanism responsible for the critical current behavior. The suppression and non-monotonic evolution of critical currents at finite magnetic field should be taken into account when designing circuits based on Majorana bound states.
Gate-tunable semiconductor-superconductor nanowires with superconducting leads form exotic Josephson junctions that are a highly desirable platform for two types of qubits: those with topological superconductivity (Majorana qubits) and those based on tunable anharmonicity (gatemon qubits). Controlling their behavior, however, requires understanding their electrostatic environment and electronic structure. Here we study gated InAs nanowires with epitaxial aluminum shells. By measuring current-phase relations (CPR) and comparing them with analytical and numerical calculations, we show that we can tune the number of modes, determine the transparency of each mode, and tune into regimes in which electron-electron interactions are apparent, indicating the presence of a quantum dot. To take into account electrostatic and geometrical effects, we perform microscopic self-consistent Schrodinger-Poisson numerical simulations, revealing the energy spectrum of Andreev states in the junction as well as their spatial distribution. Our work systematically demonstrates the effect of device geometry, gate voltage and phase bias on mode behavior, providing new insights into ongoing experimental efforts and predictive device design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا