ﻻ يوجد ملخص باللغة العربية
We have carried out first principles structural relaxation calculations on the hydrous magnesium silicate Phase A (Mg7Si2O8(OH)6) under high pressures. Our results show that phase A does not undergo any phase transition upto ~ 45 GPa. We find that non-bonded H--H distance reaches a limiting value of 1.85 angstrom at about 45 GPa. The H--H repulsive strain releasing mechanism in Phase A is found to be dramatically different from the hydrogen bond bending one that was proposed by Hofmeister et al1 for Phase B. It is based on the reduction of one of the O-H bond distances with compression.
In this work, global search for crystal structures of ternary Mg-Sc-H hydrides (Mg$_x$Sc$_y$H$_z$) under high pressure ($100 le P le 200$ GPa) were performed using the evolutionary algorithm and first-principles calculations. Based on them, we comput
The make-up of the outer planets, and many of their moons, are dominated by matter from the H-C-N-O chemical space, commonly assumed to originate from mixtures of hydrogen and the planetary ices H$_2$O, CH$_4$, and NH$_3$. In their interiors, these i
High pressure behaviour of superhydrous phase B(HT) of Mg10Si3O14(OH)4 (Shy B) is investigated with the help of density functional theory based first principles calculations. In addition to the lattice parameters and equation of state, we use these c
X-ray diffraction and Raman scattering measurements, and first-principles calculations are performed to search for the formation of NaCl-hydrogen compound. When NaCl and H$_{2}$ mixture is laser-heated to above 1500 K at pressures exceeding 40 GPa, w
The electronic and thermal transport properties have been systematically investigated in monolayer C$_4$N$_3$H with first-principles calculations. The intrinsic thermal conductivity of monolayer C$_4$N$_3$H was calculated coupling with phonons Boltzm