ﻻ يوجد ملخص باللغة العربية
We raise the possibility that the chiral degeneracy of the magnons in ultrathin films can be lifted due to the presence of Dzyaloshinskii-Moriya interactions. By using simple symmetry arguments, we discuss under which conditions such a chiral asymmetry occurs. We then perform relativistic first principles calculations for an Fe monolayer on W(110) and explicitly reveal the asymmetry of the spin-wave spectrum in case of wave-vectors parallel to the (001) direction. Furthermore, we quantitatively interpret our results in terms of a simplified spin-model by using calculated Dzyaloshinskii-Moriya vectors. Our theoretical prediction should inspire experiments to explore the asymmetry of spin-waves, with a particular emphasis on the possibility to measure the Dzyaloshinskii-Moriya interactions in ultrathin films.
Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI) which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves
Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a non-invasive, high resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected
We present a study of the thickness dependence of magnetism and electrical conductivity in ultra thin La0.67Sr0.33MnO3 films grown on SrTiO3 (110) substrates. We found a critical thickness of 10 unit cells below which the conductivity of the films di
Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is re
The spin relaxation induced by the Elliott-Yafet mechanism and the extrinsic spin Hall conductivity due to the skew-scattering are investigated in 5d transition-metal ultrathin films with self-adatom impurities as scatterers. The values of the Elliot