ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of proximity effects in superconductor/ferromagnet interface using waveguide enhancement of neutron standing waves

107   0   0.0 ( 0 )
 نشر من قبل Yuriy Khaidukov N.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is devoted to experimental study of influence of superconductivity (S) on ferromagnetism (FM) (inverse proximity effects) with the help of Polarized Neutron Reflectivity. Combining meausurements of specular and diffuse intensities it is possible to obtain full picture of magnetization change in S/FM layered systems like magnetization rotation, domain state formation, inducing of magnetization in S layer, etc. To increase weak magnetic signal we propose to use enhanced neutron standing wave regime (e.g. waveguides). In previous work we have made calculation to increase enhcanced factor. Here we present results of preparation sets of S/FM samples and attestation of their structural, magnetic, superconducting and neutron waveguide properties.



قيم البحث

اقرأ أيضاً

We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscilla tory behavior of the superconducting pair wave function in the F-layer. Then, we concentrate on recent theoretical predictions for S/F layer systems. These are a) generation of odd triplet superconductivity in the F-layer and b) ferromagnetism induced in the S-layer below the superconducting transition temperature $T_{c}$ (inverse proximity effect). The second part of the review is devoted to discussion of experiments relevant to the theoretical predictions of the first part. In particular, we present results of measurements of the critical temperature $T_{c}$ as a function of the thickness of F-layers and we review experiments indicating existence of odd triplet superconductivity, cryptoferromagnetism and inverse proximity effect.
We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet supercondu ctivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO$_3$, and the unconventional superconductor Sr$_2$RuO$_4$. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO$_3$-Sr$_2$RuO$_4$ heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr$_2$RuO$_4$.
We study the physical properties of a ballistic heterostructure made of a ferromagnet (FM) and a spin-triplet superconductor (TSC) with a layered structure stacking along the direction perpendicular to the planes where a chiral px+ipy pairing occurs and assuming spin dependent processes at the interface. We use a self-consistent Bogoliubov-de Gennes approach on a three-dimensional lattice to obtain the spatial profiles of the pairing amplitude and the magnetization. We find that, depending on the strength of the ferromagnetic exchange field, the ground state of the system can have two distinct configurations with a parallel or anti-parallel collinearity between the magnetic moments in the bulk and at the interface. We demonstrate that a magnetic state having non coplanar interface, bulk and Cooper pairs spins may be stabilized if the bulk magnetization is assumed to be fixed along a given direction. The study of the density of states reveals that the modification of the electronic spectrum in the FM plays an important role in the setting of the optimal magnetic configuration. Finally, we find the existence of induced spin-polarized pair correlations in the FM-TSC system.
236 - T. Kirzhner , G. Koren 2010
Measurements of the differential conductance spectra of YBa2Cu3O7-SrRuO3 and YBa2Cu3O7-La0.67Ca_0.33MnO3 ramp-type junctions along the node and anti-node directions are reported. The results are consistent with a crossed Andreev reflection effect onl y in YBa2Cu3O7-SrRuO3 junctions where the domain wall width of SrRuO3 is comparable with the coherence length of YBa2Cu3O7. No such effect was observed in the YBa2Cu3O7-La0.67Ca0.33MnO3 junctions, which is in line with the much larger (x10) domain wall width of La0.67Ca0.33MnO3. We also show that crossed Andreev exists only in the anti-node direction. Furthermore, we find evidence that crossed Andreev in YBa2Cu3O7 junctions is not sensitive to nm-scale interface defects, suggesting that the length scale of the crossed Andreev effect is larger than the coherence length, but still smaller than the La0.67Ca0.33MnO3s domain wall width.
Heterostructures made of itinerant ferromagnets and superconductors are studied. In contrast to most previous models, ferromagnetism is not enforced as an external Zeeman field but induced in a correlated single-band model (CSBM) that displays itiner ant ferromagnetism as a mean-field ground state. This allows us to investigate the influence of an adjacent superconducting layer on the properties of the ferromagnet in a self-consistent Bogoliubov-de Gennes approach. The CSBM displays a variety features not present in the Zeeman exchange model that influence the behavior of order parameters close to the interface, as e.g. phase separation and the competition between magnetism and superconducting orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا