ترغب بنشر مسار تعليمي؟ اضغط هنا

Rectified voltage induced by a microwave field in a confined two-dimensional electron gas with a mesoscopic static vortex

58   0   0.0 ( 0 )
 نشر من قبل David Schmeltzer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of a microwave field on a confined two dimensional electron gas which contains an insulating region comparable to the Fermi wavelength. The insulating region causes the electron wave function to vanish in that region. We describe the insulating region as a static vortex. The vortex carries a flux which is determined by vanishing of the charge density of the electronic fluid due to the insulating region. The sign of the vorticity for a hole is opposite to the vorticity for adding additional electrons. The vorticity gives rise to non-commuting kinetic momenta. The two dimensional electron gas is described as fluid with a density which obeys the Fermi-Dirac statistics. The presence of the confinement potential gives rise to vanishing kinetic momenta in the vicinity of the classical turning points. As a result, the Cartesian coordinate do not commute and gives rise to a Hall current which in the presence of a modified Fermi-Surface caused by the microwave field results in a rectified voltage. Using a Bosonized formulation of the two dimensional gas in the presence of insulating regions allows us to compute the rectified current. The proposed theory may explain the experimental results recently reported by J. Zhang et al.

قيم البحث

اقرأ أيضاً

The anomalous Hall effect in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling is studied within the Kubo-Streda formalism in the presence of pointlike potential impurities. We find that all contributions to the anomalous Hall c onductivity vanish to leading order in disorder strength when both chiral subbands are occupied. In the situation that only the majority subband is occupied, all terms are finite in the weak scattering limit and the total anomalous Hall conductivity is dominated by skew scattering. We compare our results to previous treatments and resolve some of the discrepancies present in the literature.
Magnetic impurities play an important role in many spintronics-related materials. Motivated by this fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-dimensional electron systems with Rashba spin-orbit c oupling. We find a highly nonlinear dependence on the impurity polarization, including possible sign changes. At small impurity magnetizations, this is a consequence of the remarkable result that the linear term is independent of the spin-orbit coupling strength. Near saturation of the impurity spins, the anomalous Hall conductivity can be resonantly enhanced, due to interference between potential and magnetic scattering.
The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc t ransport experiments at frequencies above 120 GHz, MIROs start to quench, while above 230 GHz, they completely disappear. The results will need to be understood theoretically but are qualitatively discussed within a model in which forced electronic charge oscillations (plasmons) play an intermediate role in the interaction process between the radiation and the single-particle electron excitations between Landau levels.
Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs/AlGaAs heterostructure enable a large variety of applications from fundamental research to high speed transistors. Electrical circuits are thereby commonly define d by creating barriers for carriers by selective depletion of a pre-existing 2DES. Here we explore an alternative approach: we deplete the 2DES globally by applying a negative voltage to a global top gate and screen the electric field of the top gate only locally using nanoscale gates placed on the wafer surface between the plane of the 2DES and the top gate. Free carriers are located beneath the screen gates and their properties can be controlled by means of geometry and applied voltages. This method promises considerable advantages for the definition of complex circuits by the electric field effect as it allows to reduce the number of gates and simplify gate geometries. Examples are carrier systems with ring topology or large arrays of quantum dots. Here, we present a first exploration of this method pursuing field effect, Hall effect and Aharonov-Bohm measurements to study electrostatic, dynamic and coherent properties.
Two-dimensionally confined electrons showing unusually large thermopower (S) have attracted attention as a potential approach for developing high performance thermoelectric materials. However, enhanced S has never been observed in electric field indu ced two-dimensional electron gas (2DEG). Here we demonstrate electric field modulation of S for a field effect transistor (FET) fabricated on a SrTiO3 crystal using a water-infiltrated nanoporous glass as the gate insulator. An electric field application confined carrier electrons up to ~2E15 /cm^2 in an extremely thin (~2 nm) 2DEG. Unusually large enhancement of |S| was observed when the sheet carrier concentration exceeded 2.5E14 /cm^2, and it modulated from ~600 (~2E15 /cm^2) to ~950 {mu}V/K (~8E14 /cm^2), which were approximately five times larger than those of the bulk, clearly demonstrating that an electric field induced 2DEG provides unusually large enhancement of |S|.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا