ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetics vs hydrodynamics: generalization of Landau/Cooper-Frye prescription for freeze-out

66   0   0.0 ( 0 )
 نشر من قبل Sergiy Akkelin
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of spectra formation in hydrodynamic approach to A+A collisions is considered within the Boltzmann equations. It is shown analytically and illustrated by numerical calculations that the particle momentum spectra can be presented in the Cooper-Frye form despite freeze-out is not sharp and has the finite temporal width. The latter is equal to the inverse of the particle collision rate at points $(t_{sigma}({bf r},p),{bf r})$ of the maximal emission at a fixed momentum $p$. The set of these points forms the hypersurfaces $t_sigma({bf r},p)$ which strongly depend on the values of $p$ and typically do not enclose completely the initially dense matter. This is an important difference from the standard Cooper-Frye prescription (CFp), with a common freeze-out hypersurface for all $p$, that affects significantly the predicted spectra. Also, the well known problem of CFp as for negative contributions to the spectra from non-space-like parts of the freeze-out hypersurface is naturally eliminated in this improved prescription.

قيم البحث

اقرأ أيضاً

Many models of heavy ion collisions employ relativistic hydrodynamics to describe the system evolution at high densities. The Cooper-Frye formula is applied in most of these models to turn the hydrodynamical fields into particles. However, the number of particles obtained from the Cooper-Frye formula is not always positive-definite. Physically negative contributions of the Cooper-Frye formula are particles that stream backwards into the hydrodynamical region. We quantify the Cooper-Frye negative contributions in a coarse-grained transport approach, which allows to compare them to the actual number of underlying particles crossing the transition hypersurface. It is found that the number of underlying inward crossings is much smaller than the one the Cooper-Frye formula gives under the assumption of equilibrium distribution functions. The magnitude of Cooper-Frye negative contributions is also investigated as a function of hadron mass, collision energy in the range $E_{rm lab} = 5-160A$ GeV, and collision centrality. The largest negative contributions we find are around 13% for the pion yield at midrapidity at $E_{rm lab} = 20A$ GeV collisions.
A finite unbound system which is equilibrium in one reference frame is in general nonequilibrium in another frame. This is a consequence of the relative character of the time synchronization in the relativistic physics. This puzzle was a prime motiva tion of the Cooper--Frye approach to the freeze-out in relativistic hydrodynamics. Solution of the puzzle reveals that the Cooper--Frye recipe is far not a unique phenomenological method that meets requirements of energy-momentum conservation. Alternative freeze-out recipes are considered and discussed.
In most heavy ion collision simulations involving relativistic hydrodynamics, the Cooper-Frye formula is applied to transform the hydrodynamical fields to particles. In this article the so-called negative contributions in the Cooper-Frye formula are studied using a coarse-grained transport approach. The magnitude of negative contributions is investigated as a function of hadron mass, collision energy in the range of $E_{rm lab} = 5$--$160A$ GeV, collision centrality and the energy density transition criterion defining the hypersurface. The microscopic results are compared to negative contributions expected from hydrodynamical treatment assuming local thermal equilibrium. The main conclusion is that the number of actual microscopic particles flying inward is smaller than the negative contribution one would expect in an equilibrated scenario. The largest impact of negative contributions is found to be on the pion rapidity distribution at midrapidity in central collisions. For this case negative contributions in equilibrium constitute 8--13% of positive contributions depending on collision energy, but only 0.5--4% in cascade calculation. The dependence on the collision energy itself is found to be non-monotonous with a maximum at 10-20$A$ GeV.
88 - D. Anchishkin 2012
The space-time structure of the multipion system created in central relativistic heavy-ion collisions is investigated. Using the microscopic transport model UrQMD we determine the freeze-out hypersurface from equation on pion density n(t,r)=n_c. It t urns out that for proper value of the critical energy density epsilon_c equation epsilon(t,r)=epsilon_c gives the same freeze-out hypersurface. It is shown that for big enough collision energies E_kin > 40A GeV/c (sqrt(s) > 8A GeV/c) the multipion system at a time moment {tau} ceases to be one connected unit but splits up into two separate spatial parts (drops), which move in opposite directions from one another with velocities which approach the speed of light with increase of collision energy. This time {tau} is approximately invariant of the collision energy, and the corresponding tau=const. hypersurface can serve as a benchmark for the freeze-out time or the transition time from the hydrostage in hybrid models. The properties of this hypersurface are discussed.
Based on transport equations we argue that the chiral dynamics in heavy-ion collisions at high collision energies effectively decouples from the thermal physics of the fireball. With full decoupling at LHC energies the chiral condensate relaxes to it s vacuum expectation value on a much shorter time scale than the typical evolution time of the fluid dynamical fields and their fluctuations. In particular, the net-baryon density remains coupled to the bulk evolution at all collision energies. As the mass scales of the hadrons are controlled by the chiral condensate, it is reasonable to employ vacuum masses in the statistical description of the hadron production at the chemical freeze-out for high collision energies. We predict that at lower collision energies the coupling of the chiral condensate to the thermal medium gradually increases with consequences for the related hadronic masses. A new estimate for the location of the freeze-out curve takes these effects into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا