ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploration of nonlocalities in ensembles consisting of bipartite quantum states

44   0   0.0 ( 0 )
 نشر من قبل Ming-Yong Ye
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is revealed that ensembles consisting of multipartite quantum states can exhibit different kinds of nonlocalities. An operational measure is introduced to quantify nonlocalities in ensembles consisting of bipartite quantum states. Various upper and lower bounds for the measure are estimated and the exact values for ensembles consisting of mutually orthogonal maximally entangled bipartite states are evaluated.

قيم البحث

اقرأ أيضاً

Gaussian bipartite states are basic tools for the realization of quantum information protocols with continuous variables. Their complete characterization is obtained by the reconstruction of the corresponding covariance matrix. Here we describe in de tails and experimentally demonstrate a robust and reliable method to fully characterize bipartite optical Gaussian states by means of a single homodyne detector. We have successfully applied our method to the bipartite states generated by a sub-threshold type-II optical parametric oscillator which produces a pair of thermal cross-polarized entangled CW frequency degenerate beams. The method provide a reliable reconstruction of the covariance matrix and allows to retrieve all the physical information about the state under investigation. These includes observable quantities, as energy and squeezing, as well as non observable ones as purity, entropy and entanglement. Our procedure also includes advanced tests for Gaussianity of the state and, overall, represents a powerful tool to study bipartite Gaussian state from the generation stage to the detection one.
In this article, we show a sufficient and necessary condition for locally distinguishable bipartite states via one-way local operations and classical communication (LOCC). With this condition, we present some minimal structures of one-way LOCC indist inguishable quantum state sets. As long as an indistinguishable subset exists in a state set, the set is not distinguishable. We also list several distinguishable sets as instances.
The unambiguous detection and quantification of entanglement is a hot topic of scientific research, though it is limited to low dimensions or specific classes of states. Here we identify an additional class of quantum states, for which bipartite enta nglement measures can be efficiently computed, providing new rigorous results. Such states are written in arbitrary $dtimes d$ dimensions, where each basis state in the subsystem A is paired with only one state in B. This new class, that we refer to as pair basis states, is remarkably relevant in many physical situations, including quantum optics. We find that negativity is a necessary and sufficient measure of entanglement for mixtures of states written in the same pair basis. We also provide analytical expressions for a tight lower-bound estimation of the entanglement of formation, a central quantity in quantum information.
A quantum ensemble ${(p_x, rho_x)}$ is a set of quantum states each occurring randomly with a given probability. Quantum ensembles are necessary to describe situations with incomplete a priori information, such as the output of a stochastic quantum c hannel (generalized measurement), and play a central role in quantum communication. In this paper, we propose measures of distance and fidelity between two quantum ensembles. We consider two approaches: the first one is based on the ability to mimic one ensemble given the other one as a resource and is closely related to the Monge-Kantorovich optimal transportation problem, while the second one uses the idea of extended-Hilbert-space (EHS) representations which introduce auxiliary pointer (or flag) states. Both types of measures enjoy a number of desirable properties. The Kantorovich measures, albeit monotonic under deterministic quantum operations, are not monotonic under generalized measurements. In contrast, the EHS measures are. We present operational interpretations for both types of measures. We also show that the EHS fidelity between ensembles provides a novel interpretation of the fidelity between mixed states--the latter is equal to the maximum of the fidelity between all pure-state ensembles whose averages are equal to the mixed states being compared. We finally use the new measures to define distance and fidelity for stochastic quantum channels and positive operator-valued measures (POVMs). These quantities may be useful in the context of tomography of stochastic quantum channels and quantum detectors.
The positivity of the partial transpose is in general only a necessary condition for separability. There exist quantum states that are not separable, but nevertheless are positive under partial transpose. States of this type are known as bound entang led states meaning that these states are entangled but they do not allow distillation of pure entanglement by means of local operations and classical communication (LOCC). We present a parametrization of a class of $2times 2$ bound entangled Gaussian states for bipartite continuous-variable quantum systems with two modes on each side. We propose an experimental protocol for preparing a particular bound entangled state in quantum optics. We then discuss the robustness properties of this protocol with respect to the occupation number of thermal inputs and the degrees of squeezing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا