ﻻ يوجد ملخص باللغة العربية
A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(111) by fitting to ab initio data. The fitting database consists of DFT calculations of Cu monomers and dimers on Ag(111), specifically their relative energies, adatom heights, and dimer separations. We start from the Mishin Cu-Ag EAM potential and first modify the Cu-Ag pair potential to match the FCC/HCP site energy difference then include Cu-Cu pair potential optimization for the entire database. The optimized EAM potential reproduce DFT monomer and dimer relative energies and geometries correctly. In trimer calculations, the potential produces the DFT relative energy between FCC and HCP trimers, though a different ground state is predicted. We use the optimized potential to calculate diffusion barriers for Cu monomers, dimers, and trimers. The predicted monomer barrier is the same as DFT, while experimental barriers for monomers and dimers are both lower than predicted here. We attribute the difference with experiment to the overestimation of surface adsorption energies by DFT and a simple correction is presented. Our results show that the optimized Cu-Ag EAM can be applied in the study of larger Cu islands on Ag(111).
Electronic structure of layered LiNiO2 has been controversial despite numerous theoretical and experimental reports regarding its nature. We investigate the charge densities, lithium intercalation potentials and Li diffusion barrier energies of LixNi
The icosahedral-like polyhedral fraction (ICO-like fraction) has been studied as a criterion for predicting the glass-forming ability of bulk ternary metallic glasses, Al90Sm8X2 (X = Al (binary), Cu, Ag, Au), using ab initio molecular dynamics (AIMD)
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined us
Scanning tunneling microscopy combined with molecular dynamics simulations reveal a dislocation-mediated island diffusion mechanism for Cu on Ag(111), a highly mismatched system. Cluster motion is tracked with atomic precision at multiple temperature
Lattice mismatch of Cu on Ag(111) produces fast diffusion for special magic sizes of islands. A size- and shape-dependent reptation mechanism is responsible for low diffusion barriers. Initiating the reptation mechanism requires a suitable island sha