ترغب بنشر مسار تعليمي؟ اضغط هنا

A simplicial $A_infty$-operad acting on $R$-resolutions

258   0   0.0 ( 0 )
 نشر من قبل Tilman Bauer
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a combinatorial model of an A-infinity-operad which acts simplicially on the cobar resolution (not just its total space) of a simplicial set with respect to a ring R.



قيم البحث

اقرأ أيضاً

97 - Vegard Fjellbo 2020
The Barratt nerve, denoted $B$, is the endofunctor that takes a simplicial set to the nerve of the poset of its non-degenerate simplices. The ordered simplicial complex $BSd, X$, namely the Barratt nerve of the Kan subdivision $Sd, X$, is a triangula tion of the original simplicial set $X$ in the sense that there is a natural map $BSd, Xto X$ whose geometric realization is homotopic to some homeomorphism. This is a refinement to the result that any simplicial set can be triangulated. A simplicial set is said to be regular if each of its non-degenerate simplices is embedded along its $n$-th face. That $BSd, Xto X$ is a triangulation of $X$ is a consequence of the fact that the Kan subdivision makes simplicial sets regular and that $BX$ is a triangulation of $X$ whenever $X$ is regular. In this paper, we argue that $B$, interpreted as a functor from regular to non-singular simplicial sets, is not just any triangulation, but in fact the best. We mean this in the sense that $B$ is the left Kan extension of barycentric subdivision along the Yoneda embedding.
Suppose $k$ is a field of characteristic 2, and $n,mgeq 4$ powers of 2. Then the $A_infty$-structure of the group cohomology algebras $H^*(C_n,k)$ and $H^*(C_m,k)$ are well known. We give results characterizing an $A_infty$-structure on $H^*(C_ntimes C_m,k)$ including limits on non-vanishing low-arity operations and an infinite family of non-vanishing higher operations.
158 - Sebastian Thomas 2009
We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of G. Our main tool is the theory of crossed module extensions of groups.
Let $G$ be a compact connected Lie group and let $P$ be a principal $G$-bundle over $K$. The gauge group of $P$ is the topological group of automorphisms of $P$. For fixed $G$ and $K$, consider all principal $G$-bundles $P$ over $K$. It is proved by Crabb--Sutherland and the second author that the number of $A_n$-types of the gauge groups of $P$ is finite if $n<infty$ and $K$ is a finite complex. We show that the number of $A_infty$-types of the gauge groups of $P$ is infinite if $K$ is a sphere and there are infinitely many $P$.
Let $kq$ denote the very effective cover of Hermitian K-theory. We apply the $kq$-based motivic Adams spectral sequence, or $kq$-resolution, to computational motivic stable homotopy theory. Over base fields of characteristic not two, we prove that th e $n$-th stable homotopy group of motivic spheres is detected in the first $n$ lines of the $kq$-resolution, thereby reinterpreting results of Morel and R{o}ndigs-Spitzweck-{O}stv{ae}r in terms of $kq$ and $kq$-cooperations. Over algebraically closed fields of characteristic 0, we compute the ring of $kq$-cooperations modulo $v_1$-torsion, establish a vanishing line of slope $1/5$ in the $E_2$-page, and completely determine the $0$- and $1$- lines of the $kq$-resolution. This gives a full computation of the $v_1$-periodic motivic stable stems and recovers Andrews and Millers calculation of the $eta$-periodic $mathbb{C}$-motivic stable stems. We also construct a motivic connective $j$ spectrum and identify its homotopy groups with the $v_1$-periodic motivic stable stems. Finally, we propose motivic analogs of Ravenels Telescope and Smashing Conjectures and present evidence for both.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا