ترغب بنشر مسار تعليمي؟ اضغط هنا

Infiniteness of $A_infty$-types of gauge groups

119   0   0.0 ( 0 )
 نشر من قبل Mitsunobu Tsutaya
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a compact connected Lie group and let $P$ be a principal $G$-bundle over $K$. The gauge group of $P$ is the topological group of automorphisms of $P$. For fixed $G$ and $K$, consider all principal $G$-bundles $P$ over $K$. It is proved by Crabb--Sutherland and the second author that the number of $A_n$-types of the gauge groups of $P$ is finite if $n<infty$ and $K$ is a finite complex. We show that the number of $A_infty$-types of the gauge groups of $P$ is infinite if $K$ is a sphere and there are infinitely many $P$.



قيم البحث

اقرأ أيضاً

219 - Mitsunobu Tsutaya 2011
Let $B$ be a finite CW complex and $G$ a compact connected Lie group. We show that the number of gauge groups of principal $G$-bundles over $B$ is finite up to $A_n$-equivalence for $n<infty$. As an example, we give a lower bound of the number of $A_ n$-equivalence types of gauge groups of principal $SU(2)$-bundles over $S^4$.
Let $G$ be a compact connected Lie group with $pi_1(G)congmathbb{Z}$. We study the homotopy types of gauge groups of principal $G$-bundles over Riemann surfaces. This can be applied to an explicit computation of the homotopy groups of the moduli spaces of stable vector bundles over Riemann surfaces.
The $p$-local homotopy types of gauge groups of principal $G$-bundles over $S^4$ are classified when $G$ is a compact connected exceptional Lie group without $p$-torsion in homology except for $(G,p)=(mathrm{E}_7,5)$.
139 - Tseleung So 2018
Let $M$ be an orientable, simply-connected, closed, non-spin 4-manifold and let $mathcal{G}_k(M)$ be the gauge group of the principal $G$-bundle over $M$ with second Chern class $kinmathbb{Z}$. It is known that the homotopy type of $mathcal{G}_k(M)$ is determined by the homotopy type of $mathcal{G}_k(mathbb{CP}^2)$. In this paper we investigate properties of $mathcal{G}_k(mathbb{CP}^2)$ when $G = SU(n)$ that partly classify the homotopy types of the gauge groups.
115 - Tse Leung So 2016
Let $G$ be a simply-connected simple compact Lie group and let $M$ be an orientable smooth closed 4-manifold. In this paper we calculate the homotopy type of the suspension of $M$ and the homotopy types of the gauge groups of principal $G$-bundles ov er $M$ when $pi_1(M)$ is: (1)~$mathbb{Z}^{*m}$, (2)~$mathbb{Z}/p^rmathbb{Z}$, or (3)~$mathbb{Z}^{*m}*(*^n_{j=1}mathbb{Z}/p_j^{r_j}mathbb{Z})$, where $p$ and the $p_j$s are odd primes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا