ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dependence of Star Formation Activity on Stellar Mass Surface Density and Sersic Index in zCOSMOS Galaxies at 0.5<z<0.9 Compared with SDSS Galaxies at 0.04<z<0.08

194   0   0.0 ( 0 )
 نشر من قبل Christian Maier
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the key unanswered questions in the study of galaxy evolution is what physical processes inside galaxies drive the changes in the SFRs in individual galaxies that, taken together, produce the large decline in the global star-formation rate density (SFRD) to redshifts since z~2. Many studies of the SFR at intermediate redshifts have been made as a function of the integrated stellar mass of galaxies but these did not use information on the internal structural properties of the galaxies. In this paper we present a comparative study of the dependence of SFRs on the average surface mass densities (SigmaM) of galaxies of different morphological types up to z~1 using the zCOSMOS and SDSS surveys. The main findings about the evolution of these relatively massive galaxies are: 1) There is evidence that, for both SDSS ans zCOSMOS galaxies, the mean specific SFR within a given population (either disk-dominated or bulge-dominated) is independent of SigmaM; 2) The observed SSFR - SigmaM step-function relation is due, at all investigated redshifts, to the changing mix of disk-dominated and bulge-dominated galaxies as surface density increases and the strong difference in the average SSFR between disks and bulges. We also find a modest differential evolution in the size-mass relations of disk and spheroid galaxies; 3) The shape of the median SSFR - SigmaM relation is similar, but with median SSFR values that are about 5-6 times higher in zCOSMOS galaxies than for SDSS, across the whole range of SigmaM, and in both spheroid and disk galaxies. This increase matches that of the global SFRD of the Universe as a whole, emphasizing that galaxies of all types are contributing, proportionally, to the global increase in SFRD in the Universe back to these redshifts (abridged).



قيم البحث

اقرأ أيضاً

106 - J. Diaz Tello 2016
Aims. We present a spectroscopic study of the properties of 64 Balmer break galaxies that show signs of star formation. The studied sample of star-forming galaxies spans a redshift range from 0.094 to 1.475 with stellar masses in the range 10$^{8}-$1 0$^{12}$ $M_{odot}$. The sample also includes eight broad emission line galaxies with redshifts between 1.5 $<z<$ 3.0. Methods. We derived star formation rates (SFRs) from emission line luminosities and investigated the dependence of the SFR and specific SFR (SSFR) on the stellar mass and color. Furthermore, we investigated the evolution of these relations with the redshift. Results. We found that the SFR correlates with the stellar mass, our data is consistent with previous results from other authors in that there is a break in the correlation, which reveals the presence of massive galaxies with lower SFR values (i.e., decreasing star formation). We also note an anticorrelation for the SSFR with the stellar mass. Again in this case, our data is also consistent with a break in the correlation, revealing the presence of massive star-forming galaxies with lower SSFR values, thereby increasing the anticorrelation. These results might suggest a characteristic mass ($M_{0}$) at which the red sequence could mostly be assembled. In addition, at a given stellar mass, high-redshift galaxies have on average higher SFR and SSFR values than local galaxies. Finally, we explored whether a similar trend could be observed with redshift in the SSFR$-(u-B)$ color diagram, and we hypothesize that a possible $(u-B)_{0}$ break color may define a characteristic color for the formation of the red sequence.
307 - C. Maier , G. Zamorani 2009
We present in these proceedings some preliminary results we have obtained studying the evolution of the specific star formation rate as a function of surface mass density and Sersic indices at z<0.7. These results are based on the consistent comparis on of the properties of ~ 650 massive zCOSMOS galaxies in a mass-complete sample at 0.5<z<0.7 with a mass-complete sample of ~ 21500 SDSS local galaxies.
We investigate the role of the delineated cosmic web/filaments on the star formation activity by exploring a sample of 425 narrow-band selected H{alpha} emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large scale structure (LSS) at z=0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter (MMF) algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific star formation rate (sSFR), the mean SFR-Mass relation and its scatter for both H{alpha} emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of H{alpha} emitters varies with environment and is enhanced in filamentary structures at z~1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of H{alpha} star-forming galaxies in filaments. Our results show that filaments are the likely physical environments which are often classed as the intermediate densities, and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.
122 - Shannon G. Patel 2011
We study the star formation rates (SFRs) of galaxies as a function of local galaxy density at 0.6<z<0.9. We used a low-dispersion prism in IMACS on the 6.5-m Baade (Magellan I) telescope to obtain spectra and measured redshifts to a precision of sigm a_z/(1+z)=1% for galaxies with z<23.3 AB mag. We utilized a stellar mass-limited sample of 977 galaxies above M>1.8x10^{10} Msun to conduct our main analysis. With three different SFR indicators, (1) Spitzer MIPS 24-micron imaging, (2) SED fitting, and (3) [OII]3727 emission, we find the median specific SFR (SSFR) and SFR to decline from the low-density field to the cores of groups and a rich cluster. For the SED and [OII] based SFRs, the decline in SSFR is roughly an order of magnitude while for the MIPS based SFRs, the decline is a factor of ~4. We find approximately the same magnitude of decline in SSFR even after removing the sample of galaxies near the cluster. Galaxies in groups and a cluster at these redshifts therefore have lower star formation (SF) activity than galaxies in the field, as is the case at z~0. We investigated whether the decline in SFR with increasing density is caused by a change in the proportion of quiescent and star forming galaxies (SFGs) or by a decline in the SFRs of SFGs. Using the rest-frame U-V and V-J colors to distinguish quiescent galaxies from SFGs we find the fraction of quiescent galaxies increases from ~32% to 79% from low to high density. In addition, we find the SSFRs of SFGs, selected based on U-V and V-J colors, to decline with increasing density by factors of ~5-6 for the SED and [OII] based SFRs. The MIPS based SSFRs for SFGs decline with a shallower slope. The order of magnitude decline in the SSFR-density relation at 0.6<z<0.9 is therefore driven by both a combination of declining SFRs of SFGs as well as a changing mix of SFGs and quiescent galaxies [ABRIDGED].
93 - Yizhou Gu 2019
To investigate the mass dependence of structural transformation and star formation quenching, we construct three galaxy samples using massive ($M_* > 10^{10} M_{odot}$) red, green, and blue galaxy populations at $0.5<z<2.5$ in five 3D--{it HST}/CANDE LS fields. The structural parameters, including effective radius ($r_{rm e}$), galaxy compactness ($Sigma_{1.5}$), and second order moment of 20% brightest pixels ($M_{20}$) are found to be correlated with stellar mass. S{e}rsic index ($n$), concentration ($C$), and Gini coefficient ($G$) seem to be insensitive to stellar mass. The morphological distinction between blue and red galaxies is found at a fixed mass bin, suggesting that quenching processes should be accompanied with transformations of galaxy structure and morphology. Except for $r_e$ and $Sigma_{1.5}$ at high mass end, structural parameters of green galaxies are intermediate between red and blue galaxies in each stellar mass bin at $z < 2$, indicating green galaxies are at a transitional phase when blue galaxies are being quenched into quiescent statuses. The similar sizes and compactness for the blue and green galaxies at high-mass end implies that these galaxies will not appear to be significantly shrunk until they are completely quenched into red QGs. For the green galaxies at $0.5<z<1.5$, a morphological transformation sequence of bulge buildup can be seen as they are gradually shut down their star formation activities, while a faster morphological transformation is verified for the green galaxies at $1.5<z<2.5$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا