ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic structure of actinide metals

157   0   0.0 ( 0 )
 نشر من قبل Gerrit van der Laan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In comparison to 3d or 4f metals, magnetism in actinides remains poorly understood due to experimental complications and the exotic behavior of the 5f states. In particular, plutonium metal is most especially vexing. Over the last five decades theories proposed the presence of either ordered or disordered local moments at low temperatures. However, experiments such as magnetic susceptibility, electrical resistivity, nuclear magnetic resonance, specific heat, and elastic and inelastic neutron scattering show no evidence for ordered or disordered magnetic moments in any of the six phases of plutonium. Beyond plutonium, the magnetic structure of other actinides is an active area of research given that temperature, pressure, and chemistry can quickly alter the magnetic structure of the 5f states. For instance, curium metal has an exceedingly large spin polarization that results in a total moment of about 8 Bohr magneton/atom, which influences the phase stability of the metal. Insight in the actinide ground state can be obtained from core-level x-ray absorption spectroscopy (XAS) and electron energy-loss spectroscopy (EELS). A sum rule relates the branching ratio of the core-level spectra measured by XAS or EELS to the expectation value of the angular part of the spin-orbit interaction.

قيم البحث

اقرأ أيضاً

100 - L. Petit , A. Svane , Z. Szotek 2009
The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density (SIC-LSD) approximation. Emphasis is put on the degree of f-electron localization, which for AO2 and A2O3 is found to follow the stoichiometry, namely corresponding to A(4+) ions in the dioxide and A(3+) ions in the sesquioxides. In contrast, the A(2+) ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction of the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onwards. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground state valency agrees with the nominal valency expected from a simple charge counting.
Actinide elements produce a plethora of interesting physical behaviors due to the 5f states. This review compiles and analyzes progress in understanding of the electronic and magnetic structure of the 5f states in actinide metals. Particular interest is given to electron energy-loss spectroscopy and many-electron atomic spectral calculations, since there is now an appreciable library of core d -> valence f transitions for Th, U, Np, Pu, Am, and Cm. These results are interwoven and discussed against published experimental data, such as x-ray photoemission and absorption spectroscopy, transport measurements, and electron, x-ray, and neutron diffraction, as well as theoretical results, such as density-functional theory and dynamical mean-field theory.
191 - Maxim Dzero , Maxim Khodas 2020
Recent experimental studies performed in the normal state of iron-based superconductors have discovered the existence of the $C_4$-symmetric (tetragonal) itinerant magnetic state. This state can be described as a spin density wave with two distinct m agnetic vectors ${vec Q}_1$ and ${vec Q}_2$. Given an itinerant nature of magnetism in iron-pnictides, we develop a quasiclassical theory of tetragonal magnetic order in disordered three-band metal with anisotropic band structure. Within our model we find that the $C_4$-symmetric magnetism competes with the $C_2$-symmetric state with a single ${vec Q}$ magnetic structure vector. Our main results is that disorder promotes tetragonal magnetic state which is in agreement with earlier theoretical studies.
The self-interaction corrected (SIC) local spin-density approximation (LSD) is used to investigate the groundstate valency configuration of the actinide ions in the actinide mono-carbides, AC (A = U, Np, Pu, Am, Cm), and the actinide mono-nitrides, A N. The electronic structure is characterized by a gradually increasing degree of f-electron localization from U to Cm, with the tendency towards localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band-picture is found to be adequate for UC and acceptable for UN, whilst a more complex manifold of competing localized and delocalized f-electron configurations underlies the groundstates of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related to the localization transition. The calculated valence electron densities of states are in good agreement with photoemission data.
We report on the magnetic structure and ordering of hexagonal LuFeO3 films grown by molecular-beam epitaxy (MBE) on YSZ (111) and Al2O3 (0001) substrates. Using a set of complementary probes including neutron diffraction, we find that the system magn etically orders into a ferromagnetically-canted antiferromagnetic state via a single transition between 138-155 K, while a paraelectric to ferroelectric transition occurs above 1000 K. The symmetry of the magnetic structure in the ferroelectric state implies that this material is a strong candidate for linear magnetoelectric coupling and control of the ferromagnetic moment directly by an electric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا