ﻻ يوجد ملخص باللغة العربية
We investigate the appearance of di-neutron bound states in pure neutron matter within the Brueckner-Hartree-Fock approach at zero temperature. We consider Argonne $v_{18}$ and Paris bare interactions as well as chiral two- and three-nucleon forces. Self-consistent single-particle potentials are calculated controlling explicitly singularities in the $g$ matrix associated with bound states. Di-neutrons are loosely bound, with binding energies below $1$ MeV, but are unambiguously present for Fermi momenta below $1$ fm$^{-1}$ for all interactions. Within the same framework we are able to calculate and characterize di-neutron bound states, obtaining mean radii as high as $sim 110$ fm. The resulting equations of state and mass-radius relations for pure neutron stars are analyzed including di-neutron contributions.
On the way of a microscopic derivation of covariant density functionals, the first complete solution of the relativistic Brueckner-Hartree-Fock (RBHF) equations is presented for symmetric nuclear matter. In most of the earlier investigations, the $G$
The isospin dependence of the nucleon effective mass is investigated in the framework of the Dirac Brueckner-Hartree-Fock (DBHF) approach. The definition of nucleon scalar and vector effective masses in the relativistic approach is clarified. Only th
Brueckner-Hartree-Fock theory allows to derive the $G$-matrix as an effective interaction between nucleons in the nuclear medium. It depends on the center of mass momentum $bm{P}$ of the two particles and on the two relative momenta $bm{q}$ and $bm{q
We have calculated the proton spectral functions in finite nuclei based on the local density approximation where the properties of finite nuclei and nuclear matter are calculated by the Skyrme-Hartree-Fock method and the extended Brueckner-Hartree-Fo
Starting from the Bonn potential, relativistic Brueckner-Hartree-Fock (RBHF) equations are solved for nuclear matter in the full Dirac space, which provides a unique way to determine the single-particle potentials and avoids the approximations applie