ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation and manipulation of anyons in a layered superconductor-2DEG system

218   0   0.0 ( 0 )
 نشر من قبل Babak Seradjeh
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Rosenberg




اسأل ChatGPT حول البحث

We describe and analyze in detail our recent theoretical proposal for the realization and manipulation of anyons in a weakly interacting system consisting of a two-dimensional electron gas in the integer quantum Hall regime adjacent to a type-II superconducting film with an artificial array of pinning sites. The anyon is realized in response to a defect in the pinned vortex lattice and carries a charge pm e/2 and a statistical angle pi/4. We establish this result, both analytically and numerically, in three complementary approaches: (i) a continuum model of two-dimensional electrons in the vortex lattice of the superconducting film; (ii) a minimal tight-binding lattice model that captures the essential features of the system; and (iii) an effective theory of the superconducting vortex lattice superposed on the integer quantum Hall state. We propose a novel method to measure the fractional charge directly in a bulk transport experiment and an all-electric setup for an ``anyon shuttle implementing the braiding operations. We briefly discuss conditions for fabricating the system in the lab and its potential applications in quantum information processing with non-Abelian anyons.



قيم البحث

اقرأ أيضاً

While the application of out-of-plane magnetic fields was, so far, believed to be detrimental for the formation of Majorana phases in artificially engineered hybrid superconducting-semiconducting junctions, several recent theoretical studies have fou nd it indeed useful in establishing such topological phases 1-5. Majorana phases emerge as quantized plateaus in the magnetoconductance of the hybrid junctions based on two-dimensional electron gases (2DEG) under fully out-of-plane magnetic fields. The large transverse Rashba spin-orbit interaction in 2DEG, together with a strong magneto-orbital effect, yield topological phase transitions to nontrivial phases hosting Majorana modes. Such Majorana modes are formed at the ends of 2DEG-based wires with a hybrid superconductor-semiconductor integrity. Here, we report on the experimental observation of such topological phases in Josephson junctions, based on In0.75Ga0.25As 2DEG, by sweeping out-of-plane magnetic fields of as small as 0 < B(mT) < 100 and probing the conductance to highlight the characteristic quantized magnetoconductance plateaus. Our approaches towards (i) creation and detection of topological phases in small out-of-plane magnetic fields, and (ii) integration of an array of topological Josephson junctions on a single chip pave the ways for the development of scalable quantum integrated circuits for their potential applications in fault-tolerant quantum processing and computing.
We analyze the effect of local spin operators in the Kitaev model on the honeycomb lattice. We show, in perturbation around the isolated-dimer limit, that they create Abelian anyons together with fermionic excitations which are likely to play a role in experiments. We derive the explicit form of the operators creating and moving Abelian anyons without creating fermions and show that it involves multi-spin operations. Finally, the important experimental constraints stemming from our results are discussed.
161 - Jun Goryo , Nobuki Maeda 2011
We investigate the magnetic response in the quantum spin Hall phase of the layered Kane-Mele model with Hubbard interaction, and argue a condition to obtain the Meissner effect. The effect of Rashba spin orbit coupling is also discussed.
155 - T. Sato , Y. Tanaka , K. Nakayama 2012
We have performed angle-resolved photoemission spectroscopy of the strongly spin-orbit coupled low-carrier density superconductor Sn1-xInxTe (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconduc tivity recently reported for this compound from point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state which indicates that this superconductor is essentially a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-non-inverted superconductor possessing a similar Fermi surface structure, Pb1-xTlxTe, suggests that the anomalous behavior in the superconducting state of Sn1-xInxTe is likely to be related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.
Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applicati ons in microelectronics, such as data storage, memory and logic. However, it is difficult to achieve extensive degeneracy, especially in a two-dimensional system. Here, we showcase in-situ controllable geometric frustration with massive degeneracy in a two-dimensional flux quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure. The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling the switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin ice magnetic state through application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting particles using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which allows us to control new functionalities in other material systems, such as magnetic skyrmions, electrons/holes in two-dimensional materials and topological insulators, as well as colloids in soft materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا