ﻻ يوجد ملخص باللغة العربية
We have performed angle-resolved photoemission spectroscopy of the strongly spin-orbit coupled low-carrier density superconductor Sn1-xInxTe (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity recently reported for this compound from point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state which indicates that this superconductor is essentially a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-non-inverted superconductor possessing a similar Fermi surface structure, Pb1-xTlxTe, suggests that the anomalous behavior in the superconducting state of Sn1-xInxTe is likely to be related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.
In fermionic systems, superconductivity and superfluidity are enabled through the condensation of fermion pairs. The nature of this condensate can be tuned by varying the pairing strength, with weak coupling yielding a BCS-like condensate and strong
Motivated by recent experiments demonstrating intricate quantum Hall physics on the surface of elemental bismuth, we consider proximity coupling an $s$-wave superconductor to a two-dimensional electron gas with strong Rashba spin-orbit interactions i
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an o
The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation.
We analyze the evidence of Majorana zero modes in nanowires that came from tunneling spectroscopy and other experiments, and scout the path to topologically protected states that are of interest for quantum computing. We illustrate the importance of