ترغب بنشر مسار تعليمي؟ اضغط هنا

Driving mechanism in massive B-type pulsators

76   0   0.0 ( 0 )
 نشر من قبل Alexey A. Pamyatnykh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. A. Dziembowski




اسأل ChatGPT حول البحث

After a historical introduction, I present the current status of our understanding of the mechanism responsible for pulsation in Beta Cephei and SPB stars.

قيم البحث

اقرأ أيضاً

We present examples of an extended asteroseismic modelling in which we aim at fitting not only pulsational frequencies but also certain complex parameter related to each frequency. This kind of studies, called textbf{complex asteroseismology}, has be en successfully applied to a few main sequence B-type pulsators and provided, in particular, plausible constraints on textbf{stellar opacities}. Here, we briefly describe our results for three early B-type stars.
The rich oscillation spectra determined for the two stars, Nu Eridani and 12 Lacertae, present an interesting challenge to stellar modelling. The stars are hybrid objects showing a number of modes at frequencies typical for Beta Cep stars but also on e mode at frequency typical for SPB stars. We construct seismic models of these stars considering uncertainties in opacity and element distribution. We also present estimate of the interior rotation rate and address the matter of mode excitation. We use both the OP and OPAL opacity data and find significant difference in the results. Uncertainty in these data remains a major obstacle in precise modelling of the objects and, in particular, in estimating the overshooting distance. We find evidence for significant rotation rate increase between envelope and core in the two stars. Instability of low-frequency g-modes was found in seismic models of Nu Eri built with the OP data, but at frequencies higher than those measured in the star. No such instability was found in models of 12 Lac. We do not have yet a satisfactory explanation for low frequency modes. Some enhancement of opacity in the driving zone is required but we argue that it cannot be achieved by the iron accumulation, as it has been proposed.
Context: OB stars are important in the chemistry and evolution of the Universe, but the sample of targets well understood from an asteroseismological point of view is still too limited to provide feedback on the current evolutionary models. Our study extends this sample with two spectroscopic binary systems. AIMS. Our goal is to provide orbital solutions, fundamental parameters and abundances from disentangled high-resolution high signal-to-noise spectra, as well as to analyse and interpret the variations in the Kepler light curve of these carefully selected targets. This way we continue our efforts to map the instability strips of beta Cep and SPB stars using the combination of high-resolution ground-based spectroscopy and uninterrupted space-based photometry. Methods: We fit Keplerian orbits to radial velocities measured from selected absorption lines of high-resolution spectroscopy using synthetic composite spectra to obtain orbital solutions. We use revised masks to obtain optimal light curves from the original pixel-data from the Kepler satellite, which provided better long term stability compared to the pipeline processed light curves. We use various time-series analysis tools to explore and describe the nature of variations present in the light curve. Results: We find two eccentric double-lined spectroscopic binary systems containing a total of three main sequence B-type stars (and one F-type component) of which at least one in each system exhibits light variations. The light curve analysis (combined with spectroscopy) of the system of two B stars points towards the presence of tidally excited g modes in the primary component. We interpret the variations seen in the second system as classical g mode pulsations driven by the kappa mechanism in the B type primary, and explain the unexpected power in the p mode region as a result of nonlinear resonant mode excitation.
We analyse time-series observations from the BRITE-Constellation of the well known $beta$ Cephei type star $theta$ Ophiuchi. Seven previously known frequencies were confirmed and nineteen new frequency peaks were detected. In particular, high-order g modes, typical for the SPB (Slowly Pulsating B-type star) pulsators, are uncovered. These low-frequency modes are also obtained from the 7-year SMEI light curve. If g modes are associated with the primary component of $theta$ Oph, then our discovery allows, as in the case of other hybrid pulsators, to infer more comprehensive information on the internal structure. To this aim we perform in-depth seismic studies involving simultaneous fitting of mode frequencies, reproducing mode instability and adjusting the relative amplitude of the bolometric flux variations. To explain the mode instability in the observed frequency range a significant increase of the mean opacity in the vicinity of the $Z$-bump is needed. Moreover, constraints on mass, overshooting from the convective core and rotation are derived. If the low-frequency modes come from the speckle B5 companion then taking into account the effects of rotation is enough to explain the pulsational mode instability.
79 - B. Buysschaert , C. Neiner , 2017
Simultaneously and coherently studying the large-scale magnetic field and the stellar pulsations of a massive star provides strong complementary diagnostics suitable for detailed stellar modelling. This hybrid method is called magneto-asteroseismolog y and permits the determination of the internal structure and conditions within magnetic massive pulsators, for example the effect of magnetism on non-standard mixing processes. Here, we overview this technique, its requirements, and list the currently known suitable stars to apply the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا