ترغب بنشر مسار تعليمي؟ اضغط هنا

On flavor violation for massive and mixed neutrinos

265   0   0.0 ( 0 )
 نشر من قبل Antonio Capolupo Dr
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss flavor charges and states for interacting mixed neutrinos in QFT. We show that the Pontecorvo states are not eigenstates of the flavor charges. This implies that their use in describing the flavor neutrinos produces a violation of lepton charge conservation in the production/detection vertices. The flavor states defined as eigenstates of the flavor charges give the correct representation of mixed neutrinos in charged current weak interaction processes.

قيم البحث

اقرأ أيضاً

We present a systematic spurion setup called Aligned Flavor Violation (AFV) that allows for new physics couplings to quarks that are aligned with the Standard Model (SM) Yukawas, but do not necessarily share their hierarchies nor are family universal . Additionally, we show that there is an important subset of AFV called Spontaneous Flavor Violation (SFV), which naturally arises from UV completions where the quark family number and CP groups are spontaneously broken. Flavor-changing neutral currents are strongly suppressed in SFV extensions of the SM. We study SFV from an effective field theory perspective and demonstrate that SFV new physics with significant and preferential couplings to first or second generation quarks may be close to the TeV scale.
We show that new physics models without new flavor violating interactions can explain the recent anomalies in the $bto sell^+ell^-$ transitions. The $bto sell^+ell^-$ arises from a $Z$ penguin which automatically predicts the $V-A$ structure for the quark currents in the effective operators. This framework can be realized either in a renormalizable $U(1)$ setup or be due to new strongly interacting dynamics. The di-muon resonance searches at the LHC are becoming sensitive to this scenario since the $Z$ is relatively light, and could well be discovered in future searches by ATLAS and CMS.
232 - Harald Fritzsch 2011
The texture zero mass matrices for the quarks and leptons describe very well the flavor mixing of the quarks and leptons. We can calculate the angles of the unitarity triangle. We expect the angle alpha of the unitarity triangle to be 90 degrees. The masses of the neutrinos can be calculated - they are very small, the largest neutrino mass is 0.05 eV. We calculated the matrix element of the mixing matrix, relevant for the reactor mixing angle. It can be measured in the near future in the DAYA BAY experiment.
In the present paper, we carry out a systematic study of the flavor invariants and their renormalization-group equations (RGEs) in the leptonic sector with three generations of charged leptons and massive Majorana neutrinos. First, following the appr oach of the Hilbert series from the invariant theory, we show that there are 34 basic flavor invariants in the generating set, among which 19 invariants are CP-even and the others are CP-odd. Any flavor invariants can be expressed as the polynomials of those 34 basic invariants in the generating set. Second, we explicitly construct all the basic invariants and derive their RGEs, which form a closed system of differential equations as they should. The numerical solutions to the RGEs of the basic flavor invariants have also been found. Furthermore, we demonstrate how to extract physical observables from the basic invariants. Our study is helpful for understanding the algebraic structure of flavor invariants in the leptonic sector, and also provides a novel way to explore leptonic flavor structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا