ﻻ يوجد ملخص باللغة العربية
Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then, we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In the case of a separable fertility function, we deduce a characteristic equation, and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
In the present paper we analyze the linear stability of a hierarchical size-structured population model where the vital rates (mortality, fertility and growth rate) depend both on size and a general functional of the population density (environment).
We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. The model is equipped with generalized Wentzell-Robin (or dynamic) boundary conditions. This all
In this paper, we discuss the well-posedness of the Cauchy problem associated with the third-order evolution equation in time $$ u_{ttt} +A u + eta A^{frac13} u_{tt} +eta A^{frac23} u_t=f(u) $$ where $eta>0$, $X$ is a separable Hilbert space, $A:D(A)
In this paper we develop the global symbolic calculus of pseudo-differential operators generated by a boundary value problem for a given (not necessarily self-adjoint or elliptic) differential operator. For this, we also establish elements of a non-s
We investigate steady states of a quasilinear first order hyperbolic partial integro-differential equation. The model describes the evolution of a hierarchical structured population with distributed states at birth. Hierarchical size-structured model