ترغب بنشر مسار تعليمي؟ اضغط هنا

Steady states in hierarchical structured populations with distributed states at birth

103   0   0.0 ( 0 )
 نشر من قبل Jozsef Farkas
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate steady states of a quasilinear first order hyperbolic partial integro-differential equation. The model describes the evolution of a hierarchical structured population with distributed states at birth. Hierarchical size-structured models describe the dynamics of populations when individuals experience size-specific environment. This is the case for example in a population where individuals exhibit cannibalistic behavior and the chance to become prey (or to attack) depends on the individuals size. The other distinctive feature of the model is that individuals are recruited into the population at arbitrary size. This amounts to an infinite rank integral operator describing the recruitment process. First we establish conditions for the existence of a positive steady state of the model. Our method uses a fixed point result of nonlinear maps in conical shells of Banach spaces. Then we study stability properties of steady states for the special case of a separable growth rate using results from the theory of positive operators on Banach lattices.



قيم البحث

اقرأ أيضاً

We consider a nonlinear structured population model with a distributed recruitment term. The question of the existence of non-trivial steady states can be treated (at least!) in three different ways. One approach is to study spectral properties of a parametrized family of unbounded operators. The alternative approach, on which we focus here, is based on the reformulation of the problem as an integral equation. In this context we introduce a density dependent net reproduction rate and discuss its relationship to a biologically meaningful quantity. Finally, we briefly discuss a third approach, which is based on the finite rank approximation of the recruitment operator.
We study the question of existence of positive steady states of nonlinear evolution equations. We recast the steady state equation in the form of eigenvalue problems for a parametrised family of unbounded linear operators, which are generators of str ongly continuous semigroups; and a fixed point problem. In case of irreducible governing semigroups we consider evolution equations with non-monotone nonlinearities of dimension two, and we establish a new fixed point theorem for set-valued maps. In case of reducible governing semigroups we establish results for monotone nonlinearities of any finite dimension $n$. In addition, we establish a non-quasinilpotency result for a class of strictly positive operators, which are neither irreducible nor compact, in general. We illustrate our theoretical results with examples of partial differential equations arising in structured population dynamics. In particular, we establish existence of positive steady states of a size-structured juvenile-adult and a structured consumer-resource population model, as well as for a selection-mutation model with distributed recruitment process.
We introduce a nonlinear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compa rtment that carries mass, hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for example Wolbachia in a mosquito population. Therefore the (infinite dimensional) nonlinearity arises in the recruitment term. First we establish global existence of solutions and the Principle of Linearised Stability for our model. Then, in our main result, we formulate simple conditions, which guarantee the existence of non-trivial steady states of the model. Our method utilizes an operator theoretic framework combined with a fixed point approach. Finally, in the last section we establish a sufficient condition for the local asymptotic stability of the positive steady state.
208 - Jozsef Z. Farkas 2009
We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearised syste m is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearised operator equals zero, i.e. when linearisation does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearised system exhibits bistability, for a certain range of values of the external inflow, induced potentially by All{e}e-effect.
In the present paper we analyze the linear stability of a hierarchical size-structured population model where the vital rates (mortality, fertility and growth rate) depend both on size and a general functional of the population density (environment). We derive regularity properties of the governing linear semigroup, implying that linear stability is governed by a dominant real eigenvalue of the semigroup generator, which arises as a zero of an associated characteristic function. In the special case where neither the growth rate nor the mortality depend on the environment, we explicitly calculate the characteristic function and use it to formulate simple conditions for the linear stability of population equilibria. In the general case we derive a dissipativity condition for the linear semigroup, thereby characterizing exponential stability of the steady state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا