ﻻ يوجد ملخص باللغة العربية
We use ideas from algebraic geometry and dynamical systems to explain some ways that control points influence the shape of a Bezier curve or patch. In particular, we establish a generalization of Birchs Theorem and use it to deduce sufficient conditions on the control points for a patch to be injective. We also explain a way that the control points influence the shape via degenerations to regular control polytopes. The natural objects of this investigation are irrational patches, which are a generalization of Krasauskass toric patches, and include Bezier and tensor product patches as important special cases.
We use the mirror theorem for toric Deligne-Mumford stacks, proved recently by the authors and by Cheong-Ciocan-Fontanine-Kim, to compute genus-zero Gromov-Witten invariants of a number of toric orbifolds and gerbes. We prove a mirror theorem for a c
It is known that a maximal intersection log canonical Calabi-Yau surface pair is crepant birational to a toric pair. This does not hold in higher dimension: this paper presents some examples of maximal intersection Calabi-Yau pairs that admit no toric model.
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat
Let $X$ be a projective K3 surfaces. In two examples where there exists a fine moduli space $M$ of stable vector bundles on $X$, isomorphic to a Hilbert scheme of points, we prove that the universal family $mathcal{E}$ on $Xtimes M$ can be understood
We show that the Virasoro conjecture in Gromov--Witten theory holds for the the total space of a toric bundle $E to B$ if and only if it holds for the base $B$. The main steps are: (i) we establish a localization formula that expresses Gromov--Witten