ترغب بنشر مسار تعليمي؟ اضغط هنا

De-Trending Time Series for Astronomical Variability Surveys

94   0   0.0 ( 0 )
 نشر من قبل Dae-Won Kim
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a de-trending algorithm for the removal of trends in time series. Trends in time series could be caused by various systematic and random noise sources such as cloud passages, changes of airmass, telescope vibration or CCD noise. Those trends undermine the intrinsic signals of stars and should be removed. We determine the trends from subsets of stars that are highly correlated among themselves. These subsets are selected based on a hierarchical tree clustering algorithm. A bottom-up merging algorithm based on the departure from normal distribution in the correlation is developed to identify subsets, which we call clusters. After identification of clusters, we determine a trend per cluster by weighted sum of normalized light-curves. We then use quadratic programming to de-trend all individual light-curves based on these determined trends. Experimental results with synthetic light-curves containing artificial trends and events are presented. Results from other de-trending methods are also compared. The developed algorithm can be applied to time series for trend removal in both narrow and wide field astronomy.



قيم البحث

اقرأ أيضاً

We present variability analysis of data from the Northern Sky Variability Survey (NSVS). Using the clustering method which defines variable candidates as outliers from large clusters, we cluster 16,189,040 light curves, having data points at more tha n 15 epochs, as variable and non-variable candidates in 638 NSVS fields. Variable candidates are selected depending on how strongly they are separated from the largest cluster and how rarely they are grouped together in eight dimensional space spanned by variability indices. All NSVS light curves are also cross-correlated to the Infrared Astronomical Satellite, AKARI, Two Micron All Sky Survey, Sloan Digital Sky Survey (SDSS), and Galaxy Evolution Explorer objects as well as known objects in the SIMBAD database. The variability analysis and cross-correlation results are provided in a public online database which can be used to select interesting objects for further investigation. Adopting conservative selection criteria for variable candidates, we find about 1.8 million light curves as possible variable candidates in the NSVS data, corresponding to about 10% of our entire NSVS samples. Multi-wavelength colors help us find specific types of variability among the variable candidates. Moreover, we also use morphological classification from other surveys such as SDSS to suppress spurious cases caused by blending objects or extended sources due to the low angular resolution of the NSVS.
74 - Joel D. Hartman 2016
This paper describes the VARTOOLS program, which is an open-source command-line utility, written in C, for analyzing astronomical time-series data, especially light curves. The program provides a general-purpose set of tools for processing light curv es including signal identification, filtering, light curve manipulation, time
We present a new framework to detect various types of variable objects within massive astronomical time-series data. Assuming that the dominant population of objects is non-variable, we find outliers from this population by using a non-parametric Bay esian clustering algorithm based on an infinite GaussianMixtureModel (GMM) and the Dirichlet Process. The algorithm extracts information from a given dataset, which is described by six variability indices. The GMM uses those variability indices to recover clusters that are described by six-dimensional multivariate Gaussian distributions, allowing our approach to consider the sampling pattern of time-series data, systematic biases, the number of data points for each light curve, and photometric quality. Using the Northern Sky Variability Survey data, we test our approach and prove that the infinite GMM is useful at detecting variable objects, while providing statistical inference estimation that suppresses false detection. The proposed approach will be effective in the exploration of future surveys such as GAIA, Pan-Starrs, and LSST, which will produce massive time-series data.
We discuss time-series analyses of classical Cepheid and RR Lyrae variables in the Galaxy and the Magellanic Clouds at multiple wavelengths. We adopt the Fourier decomposition method to quantify the structural changes in the light curves of Cepheid a nd RR Lyrae variables. A quantitative comparison of Cepheid Fourier parameters suggests that the canonical mass-luminosity models that lie towards the red-edge of the instability strip show a greater offset with respect to observations for short-period Cepheids. RR Lyrae models are consistent with observations in most period bins. We use ensemble light curve analysis to predict the physical parameters of observed Cepheid and RR Lyrae variables using machine learning methods. Our preliminary results suggest that the posterior distributions of mass, luminosity, temperature and radius for Cepheids and RR Lyraes can be well-constrained for a given metal abundance, provided a smoother grid of models is adopted in various input physical parameters.
In this letter, we propose a method for period estimation in light curves from periodic variable stars using correntropy. Light curves are astronomical time series of stellar brightness over time, and are characterized as being noisy and unevenly sam pled. We propose to use slotted time lags in order to estimate correntropy directly from irregularly sampled time series. A new information theoretic metric is proposed for discriminating among the peaks of the correntropy spectral density. The slotted correntropy method outperformed slotted correlation, string length, VarTools (Lomb-Scargle periodogram and Analysis of Variance), and SigSpec applications on a set of light curves drawn from the MACHO survey.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا