ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-time picture of the string fragmentation and the fusion of colour strings

93   0   0.0 ( 0 )
 نشر من قبل Vladimir Vechernin
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف V. V. Vechernin




اسأل ChatGPT حول البحث

It is shown that naive two stage scenario of the soft multiparticle production in hadronic and nuclear collisions at high energy, when at first stage the colour strings are formed and at the second stage these strings, or some other (higher colour) strings formed due to fusion of primary strings, are decaying, emitting observed particles, encounters some difficulties at the attempt to analyse the space-time picture of the process. Simple analysis shows the dominant is the process when the formation and the decay of a string occur in parallel - a string breaks into two parts already at rather small length (about 1-2 fm in its c.m. system), then the process repeats in the pieces and so on. Nevertheless it is proved to be possible to agree the string fusion idea with the space-time picture of a string decay. In the framework of the Artru-Mennessier model of a string fragmentation the simple interpretation of the homogeneity of the rapidity distribution for hadrons produced from the decay of a single string at high energy is presented and the analytical estimate for the density of this rapidity distribution is obtained.



قيم البحث

اقرأ أيضاً

190 - K.Gallmeister , T.Falter 2005
We examine the space-time evolution of (pre-)hadron production within the Lund string fragmentation model. The complete four-dimensional information of the string breaking vertices and the meeting points of the prehadron constituents are extracted fo r each single event in Monte Carlo simulations using the Jetset-part of Pythia. We discuss the implication on the deep inelastic lepton scattering experiments at HERMES as well as on observables in ultra-relativistic heavy ion collisions at RHIC, using Pythia also for modeling the hard part of the interaction.
Motivated by recent theoretical arguments that expanding strings can be regarded as having a temperature that is inversely proportional to the proper time, tau, we investigate the consequences of adding a term proportional to 1/tau to the string tens ion in the Lund string-hadronization model. The lattice value for the tension, kappa0 ~ 0.18 GeV^2 ~ 0.9 GeV/fm, is then interpreted as the late-time/equilibrium limit. A generic prediction of this type of model is that early string breaks should be associated with higher strangeness (and baryon) fractions and higher fragmentation <pT> values. It should be possible to use archival ee data sets to provide model-independent constraints on this type of scenario, and we propose a few simple key measurements to do so.
Motivated by recent discoveries of flow-like effects in pp collisions, and noting that multiple string systems can form and hadronize simultaneously in such collisions, we develop a simple model for the repulsive interaction between two Lund strings with a positive (colour-oriented) overlap in rapidity. The model is formulated in momentum space and is based on a postulate of a constant net transverse momentum being acquired per unit of overlap along a common rapidity direction. To conserve energy, the strings shrink in the longitudinal direction, essentially converting a portion of the string invariant mass $m^2$ into $p_{perp}^2$ for constant $m_{perp}^2 = m^2 + p_{perp}^2$ for each string. The reduction in string invariant mass implies a reduced overall multiplicity of produced hadrons; the increase in $p_{perp}^2$ is local and only affects hadrons in the overlapping region. Starting from the simplest case of two symmetric and parallel strings with massless endpoints, we generalize to progressively more complicated configurations. We present an implementation of this model in the Pythia event generator and use it to illustrate the effects on hadron $p_{perp}$ distributions and dihadron azimuthal correlations, contrasting it with the current version of the shoving model implemented in the same generator.
We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading $N_C$ are allowed to influence the formation of confining potentials (strings). The multiplet structure of $SU(3)$ is combined with a mi nimisation of the string potential energy, to decide between which partons strings should form, allowing also for baryonic configurations (e.g., two colours can combine coherently to form an anticolour). In $e^+e^-$collisions, modifications to the leading-colour picture are small, suppressed by both colour and kinematics factors. But in $pp$ collisions, multi-parton interactions increase the number of possible subleading connections, counteracting their naive $1/N_C^2$ suppression. Moreover, those that reduce the overall string lengths are kinematically favoured. The model, which we have implemented in the PYTHIA 8 generator, is capable of reaching agreement not only with the important $left<p_perpright>(n_mathrm{charged})$ distribution but also with measured rates (and ratios) of kaons and hyperons, in both $ee$ and $pp$ collisions. Nonetheless, the shape of their $p_perp$ spectra remains challenging to explain.
We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In t hat proposal single (though in general metastable) hadronic states are associated with irreducible gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction $J$ or an anti-junction $bar{J}$. For the junction-free sector (ordinary $q, bar{q}$ mesons and glueballs) the picture is supported by large-$N$ (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with $J$ and/or $bar{J}$ constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of $J-bar{J}$ annihilation diagrams. Such a rule implies that hadrons with junctions are mesophobic and thus unusually narrow if they are below threshold for decaying into as many baryons as their total number of junctions (two for a tetraquark, three for a pentaquark). Experimental support for our claim, based on the observation that narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic) thresholds, will be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا