ترغب بنشر مسار تعليمي؟ اضغط هنا

Antiphase dynamics in a multimode semiconductor laser with optical injection

251   0   0.0 ( 0 )
 نشر من قبل Stephen O'Brien
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A detailed experimental study of antiphase dynamics in a two-mode semiconductor laser with optical injection is presented. The device is a specially designed Fabry-Perot laser that supports two primary modes with a THz frequency spacing. Injection in one of the primary modes of the device leads to a rich variety of single and two-mode dynamical scenarios, which are reproduced with remarkable accuracy by a four dimensional rate equation model. Numerical bifurcation analysis reveals the importance of torus bifurcations in mediating transitions to antiphase dynamics and of saddle-node of limit cycle bifurcations in switching of the dynamics between single and two-mode regimes.

قيم البحث

اقرأ أيضاً

The process of tunneling injection is known to improve the dynamical characteristics of quantum well and quantum dot lasers; in the latter, it also improves the temperature performance. The advantage of the tunneling injection process stems from the fact that it avoids hot carrier injection, which is a key performance-limiting factor in all semiconductor lasers. The tunneling injection process is not fully understood microscopically and therefore it is difficult to optimize those laser structures. We present here a numerical study of the broad band carrier dynamics in a tunneling injection quantum dot gain medium in the form of an optical amplifier operating at 1.55 um. Charge carrier tunneling occurs in a hybrid state that joins the quantum dot first excited state and the confined quantum well - injection well states. The hybrid state, which is placed energetically roughly one LO phonon above the ground state and has a spectral extent of about 5 meV , dominates the carrier injection to the ground state. We calculate the dynamical response of the inversion across the entire gain spectrum following a short pulse perturbation at various wavelengths and for two bias currents. At a high bias of 200 mA, the entire spectrum exhibits gain; at 30 mA, the system exhibits a mixed gain - absorption spectrum. The carrier dynamics in the injection well is calculated simultaneously. We discuss the role of the pulse excitation wavelengths relative to the gain spectrum peak and demonstrate that the injection well responds to all perturbation wavelengths, even those which are far from the region where the tunneling injection process dominates.
377 - T. Yang 2013
Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is done with a single-frequency seeding beam. In this work we show that injection locking may also be achieved in the case of multi -frequency seeding beam when slave laser provides sufficient frequency filtering. One relevant parameter turns out to be the frequency detuning between the free running slave laser and each injected frequency component. Stable selective locking to a set of three components separated of $1.2,$GHz is obtained for (positive) detuning values between zero and $1.5,$GHz depending on seeding power (ranging from 10 to 150 microwatt). This result suggests that, using distinct slave lasers for each line, a set of mutually coherent narrow-linewidth high-power radiation modes can be obtained.
We present an experimental and theoretical study of modal nonlinear dynamics in a specially designed dual-mode semiconductor Fabry-Perot laser with a saturable absorber. At zero bias applied to the absorber section, we have found that with increasing device current, single mode self-pulsations evolve into a complex dynamical state where the total intensity experiences regular bursts of pulsations on a constant background. Spectrally resolved measurements reveal that in this state the individual modes of the device can follow highly symmetric but oppositely directed spiralling orbits. Using a generalization of the rate equation description of a semiconductor laser with saturable absorption to the multimode case, we show that these orbits appear as a consequence of the interplay between the material dispersion in the gain and absorber sections of the laser. Our results provide insights into the factors that determine the stability of multimode states in these systems, and they can inform the development of semiconductor mode-locked lasers with tailored spectra.
We present a simple and effective method to implement an active stabilization of a diode laser with injection locking, which requires minimal user intervenes. The injection locked state of the diode laser is probed by a photodetector, of which sensit ivity is enhanced by a narrow laser-line filter. Taking advantage of the characteristic response of laser power to spectral modes from the narrow laser-line filter, we demonstrate that high spectral purity and low intensity noise of the diode can be simultaneously maintained by an active feedback to the injected laser. Our method is intrinsically cost-effective, and does not require bulky devices, such as Fabry-Perot interferometers or wavemeters, to actively stabilize the diode laser. Based on successful implementation of this method in our quantum gas experiments, it is conceivable that our active stabilization will greatly simplify potential applications of injection locking of diode lasers in modularized or integrated optical systems.
We investigate experimentally and theoretically the lasing behavior of dielectric microcavity lasers with chaotic ray dynamics. Experiments show multimode lasing for both D-shaped and stadium-shaped wave-chaotic cavities. Theoretical calculations als o find multimode lasing for different shapes, sizes and refractive indices. While there are quantitative differences between the theoretical lasing spectra of the stadium and D-cavity, due to the presence of scarred modes with anomalously high quality factors, these differences decrease as the system size increases, and are also substantially reduced when the effects of surface roughness are taken into account. Lasing spectra calculations are based on Steady-State Ab Initio Laser Theory, and indicate that gain competition is not sufficient to result in single-mode lasing in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا